Probing New Antileukemia Agents That Target FLT3 and BCL-2 from Traditional Concoctions through a Combination of Mass Spectrometry Analysis and Consensus Docking Methods
Abstract
:1. Introduction
2. Methodology
2.1. Generating Potential Drug Candidates from Traditional Herbs
2.2. Docking and Scoring-Function
2.3. Consensus Ranking of the Combined Docking Scores
3. Results and Discussion
3.1. Identification of the Drug Candidates from the Concoctions Using LC-MS
3.2. Docking Study
3.3. Optimizing Ranking to Select the Top Hit Molecules
3.4. Performance of the Docking Scores with Known Drugs
3.5. The Distribution of the Docking Scores
3.6. Potential Inhibitors BCL-2
3.7. The Difference in the Binding Site Orientation
3.8. The Top-Ranked Molecules from the Traditional Concoctions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C.N.; Cossio, P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, W.L. The Many Roles of Computation in Drug Discovery. Science 2004, 303, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Rognan, D. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacol. Ther. 2017, 175, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res. 2009, 42, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [Google Scholar] [CrossRef]
- Charifson, P.S.; Corkery, J.J.; Murcko, M.A.; Walters, W.P. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 1999, 42, 5100–5109. [Google Scholar] [CrossRef]
- Ren, X.; Shi, Y.S.; Zhang, Y.; Liu, B.; Zhang, L.H.; Peng, Y.B.; Zeng, R. Novel Consensus Docking Strategy to Improve Ligand Pose Prediction. J. Chem. Inf. Model. 2018, 58, 1662–1668. [Google Scholar] [CrossRef]
- Perelló-Reus, C.M.; Català, A.; Caviedes-Cárdenas, L.; García-Vega, N.; Camós, M.; Pérez-Torras, S.; Pastor-Anglada, M. FMS-like tyrosine kinase 3 (FLT3) modulates key enzymes of nucleotide metabolism implicated in cytarabine responsiveness in pediatric acute leukemia. Pharmacol. Res. 2020, 151, 104556. [Google Scholar] [CrossRef]
- Ozeki, K.; Kiyoi, H.; Hirose, Y.; Iwai, M.; Ninomiya, M.; Kodera, Y.; Miyawaki, S.; Kuriyama, K.; Shimazaki, C.; Akiyama, H.; et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004, 103, 1901–1908. [Google Scholar] [CrossRef] [Green Version]
- Stam, R.W.; Den Boer, M.L.; Schneider, P.; Nollau, P.; Horstmann, M.; Beverloo, H.B.; Van Der Voort, E.; Valsecchi, M.G.; De Lorenzo, P.; Sallan, S.E.; et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005, 106, 2484–2490. [Google Scholar] [CrossRef]
- Kawase, T.; Nakazawa, T.; Eguchi, T.; Tsuzuki, H.; Ueno, Y.; Amano, Y.; Suzuki, T.; Mori, M.; Yoshida, T. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget 2019, 10, 6111–6123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorcea, C.M.; Burthem, J.; Tholouli, E. ASP2215 in the treatment of relapsed/refractory acute myeloid leukemia with FLT3 mutation: Background and design of the ADMIRAL trial. Futur. Oncol. 2018, 14, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Investig. New Drugs 2017, 35, 556–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkinshaw, R.W.; Gong, J.; Luo, C.S.; Lio, D.; White, C.A.; Anderson, M.A.; Blombery, P.; Lessene, G.; Majewski, I.J.; Thijssen, R.; et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 2019, 10, 2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Wu, Z.; He, Y.; Xiao, Y.; Xia, C. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur. J. Med. Chem. 2020, 201, 112446. [Google Scholar] [CrossRef]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef]
- Blombery, P.; Anderson, M.A.; Gong, J.; Thijssen, R.; Birkinshaw, R.W.; Thompson, E.; Teh, C.E.; Nguyen, T.; Xu, Z.; Flensburg, C.; et al. Acquisition of the Recurrent Gly101Val Mutation in BCL2 Confers Resistance to Venetoclax in Patients with Progressive Chronic Lymphocytic Leukemia. Blood 2018, 132, LBA-7. [Google Scholar] [CrossRef]
- Nkechinyere Adeniyi, J.; Nlooto, M.; Ngcobo, M.; Moodley, R.; Gomo, E. Phytochemical profile and in vitro antioxidant activity of Emelia M (EMB), Mshikazi and Delosma H herbal medicines as demonstrated in THP-1 and Jurkat leukaemia cell lines. Afr. Health Sci. 2021, 21, 1924–1937. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Almahmoud, S.A.; Arfeen, M.; Srivastava, A.; El-Readi, M.Z.; Ragab, E.A.; Shehata, S.M.; Mohammed, S.A.A.; Mostafa, E.M.; El-khawaga, H.A.; et al. Phytochemical profiling, molecular docking, and in vitro anti-hepatocellular carcinoid bioactivity of Suaeda vermiculata extracts. Arab. J. Chem. 2022, 15, 103950. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, X.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Thomsan, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, S.J.; Van Dijk, A.D.J.; Krzeminski, M.; Van Dijk, M.; Thureau, A.; Hsu, V.; Wassenaar, T.; Bonvin, A.M.J.J. HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins Struct. Funct. Genet. 2007, 69, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general Amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S. How Does Consensus Scoring Work for Virtual Library Screening? An Idealized Computer Experiment. J. Chem. Inf. Comput. Sci. 2001, 41, 1422–1426. [Google Scholar] [CrossRef]
- Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J. Chem. Inf. Model. 2006, 46, 380–391. [Google Scholar] [CrossRef]
- Liu, S.; Fu, R.; Zhou, L.H.; Chen, S.P. Application of consensus scoring and principal component analysis for virtual screening against β-secretase (BACE-1). PLoS One 2012, 7, e38086. [Google Scholar] [CrossRef]
- Smirk, F.H.; Mcqueen, E.G. Comparison of Rescinnamine and Reserpine As Hypotensive Agents. Lancet 1955, 266, 115–116. [Google Scholar] [CrossRef]
- Fife, R.; Maclaurin, J.C.; Wright, J.H. Rescinnamine in treatment of hypertension in hospital clinic and in general practice. Br. Med. J. 1960, 2, 1848–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiens, S.A.; Luttrel, W.; Binard, J.E. Polyethylene glycol versus vegetable oil based bisacodyl suppositories to initiate side-lying bowel care: A clinical trial in persons with spinal cord injury. Spinal Cord 1998, 36, 777–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wald, A. Constipation advances in diagnosis and treatment. JAMA J. Am. Med. Assoc. 2016, 315, 185–191. [Google Scholar] [CrossRef]
- Bickoff, E.M.; Livingston, A.L.; Guggolz, J.; Ray Thompson, C. Comparative evaluation of antioxidants for carotene. J. Am. Oil Chem. Soc. 1952, 29, 445–446. [Google Scholar] [CrossRef]
- Holt, M.C. Methoserpidine. Br. Med. J. 1961, 2, 415–418. [Google Scholar] [CrossRef]
- Forrester, T.M.; Shirriffs, G.G. Methyldopa and Methoserpidine in Hypertension. Lancet 1967, 289, 141–142. [Google Scholar] [CrossRef]
Molecule | Moledock | Molecule | Rerank | Molecule | Vina | Molecule | Glide | Molecule | Haddock (Rigid) | Molecule | Haddock (Flex) | Molecule | Haddock (Flex, Water) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6o0k | |||||||||||||
1989522 | −137.62 | 81232 | −102.43 | venetoclax | −12.10 | venetoclax | −7.63 | venetoclax | −21.34 | venetoclax | −57.22 | venetoclax | −75.17 |
113155 | −137.02 | 57874 | −102.08 | 215587 | −10.20 | 3342981 | −6.83 | 2642800 | −19.92 | gilteritinib | −52.12 | 865043 | −54.66 |
24815245 | −130.77 | 3648213 | −98.16 | 71636 | −10.20 | 67199660 | −6.78 | 50293 | −19.60 | 865043 | −51.33 | 486475 | −53.25 |
7235407 | −130.72 | 865043 | −96.37 | 113155 | −10.10 | 6267023 | −6.71 | 3848519 | −18.81 | 18713514 | −47.98 | 78308 | −53.24 |
venetoclax | −129.01 | 58208 | −93.33 | 1662017 | −9.60 | 215587 | −6.70 | 7173844 | −18.34 | 603509 | −46.70 | 85734 | −53.07 |
67970 | −128.31 | 1241947 | −88.36 | 3342981 | −9.10 | 28322023 | −6.68 | 614266 | −18.02 | 629970 | −46.44 | 18713514 | −51.34 |
486475 | −127.40 | 101757 | −87.69 | 77098 | −9.10 | 72480 | −6.64 | 22232719 | −17.83 | 486475 | −45.08 | 604320 | −51.02 |
58208 | −126.29 | 85734 | −86.17 | 213467 | −9.00 | 1771182 | −6.61 | 603509 | −17.71 | 78308 | −44.36 | 32634687 | −50.77 |
71636 | −126.27 | 603509 | −85.07 | 56495 | −9.00 | 86884 | −6.57 | 2227170 | −17.69 | 85734 | −43.66 | 603509 | −50.63 |
3648213 | −125.93 | 563042 | −83.60 | 81232 | −9.00 | 213467 | −6.56 | 604320 | −17.66 | 630024 | −43.63 | 52645531 | −50.25 |
6o0l | |||||||||||||
venetoclax | −152.76 | venetoclax | −110.00 | venetoclax | −11.70 | venetoclax | −8.45 | 544763 | −19.38 | 28782425 | −44.33 | venetoclax | −55.58 |
24815245 | −146.21 | gilteritinib | −102.54 | 71636 | −10.20 | 215587 | −6.69 | 604320 | −18.82 | gilteritinib | −43.56 | 865043 | −48.77 |
1989522 | −142.78 | 3648213 | −98.85 | 113155 | −10.00 | 239010 | −6.65 | 50146 | −17.86 | 865043 | −43.09 | 1164165 | −47.11 |
604320 | −137.89 | 57874 | −96.80 | 81232 | −9.70 | 86884 | −6.58 | 531919 | −17.77 | 67970 | −42.30 | 2432908 | −46.82 |
113155 | −136.44 | 59052 | −93.50 | 215587 | −9.50 | 28322023 | −6.54 | 39208009 | −17.42 | 50146 | −41.87 | 50146 | −46.36 |
7235407 | −134.60 | 865043 | −90.17 | 213467 | −9.40 | 1207698 | −6.47 | 101757 | −16.83 | 604320 | −40.96 | 126147 | −45.92 |
gilteritinib | −133.76 | 24815245 | −89.95 | 1662017 | −9.20 | 63077009 | −6.43 | 117817 | −16.75 | venetoclax | −40.08 | 24815245 | −45.08 |
865043 | −132.21 | 563042 | −89.81 | 56495 | −9.10 | 1771182 | −6.39 | 85698 | −16.68 | 7173844 | −39.51 | 629970 | −44.27 |
85734 | −130.39 | 1330865 | −89.34 | 3342981 | −9.00 | 72480 | −6.39 | 1120281 | −16.54 | 24815245 | −39.27 | 28782425 | −43.87 |
71636 | −129.99 | 58208 | −88.92 | 632520 | −8.80 | 897789 | −6.39 | 2259963 | −16.32 | 117817 | −39.04 | 32634687 | −43.46 |
6il3 | |||||||||||||
24815245 | −143.83 | 59052 | −110.66 | 56495 | −10.50 | 897789 | −9.48 | 133493 | −15.78 | 24815245 | −49.40 | 1617909 | −49.58 |
1989522 | −141.97 | 111013 | −105.01 | 213467 | −10.40 | 520285 | −8.91 | 111013 | −15.07 | gilteritinib | −45.96 | 59052 | −47.70 |
venetoclax | −141.78 | 865043 | −101.04 | 63077009 | −10.40 | 239010 | −8.00 | 608935 | −15.03 | 85723 | −44.74 | 1166525 | −46.69 |
111013 | −139.62 | 55334515 | −100.24 | 113155 | −9.70 | 3457485 | −7.97 | 1207698 | −14.88 | 642659 | −44.60 | 101757 | −45.61 |
113155 | −139.41 | 2432908 | −98.73 | 1662017 | −9.70 | 2440224 | −7.82 | 116165 | −14.64 | 117840 | −44.09 | 1031932 | −45.36 |
604320 | −136.22 | 24815245 | −94.75 | 129000 | −9.60 | 101757 | −7.56 | 56495 | −14.58 | 215587 | −43.39 | 563042 | −44.39 |
865043 | −132.98 | 83885 | −93.28 | 3342981 | −9.60 | 531919 | −7.44 | 58208 | −13.93 | 213467 | −43.16 | 126147 | −44.23 |
59052 | −131.80 | 57114 | −92.62 | 239010 | −9.50 | 15597769 | −7.37 | 111068 | −13.78 | 81812 | −42.76 | 28782425 | −44.12 |
gilteritinib | −131.66 | 84786 | −92.60 | venetoclax | −9.50 | 40817081 | −7.10 | 215587 | −13.76 | 1617909 | −42.63 | 93765 | −43.45 |
2432908 | −128.74 | 1843056 | −91.88 | 40817081 | −9.30 | 85734 | −7.10 | 614266 | −13.72 | 1843056 | −42.61 | 85734 | −43.03 |
Molecule | RbN | Molecule | RbR | Molecule | AASS | Molecule | Z-Score | Molecule | ECR |
---|---|---|---|---|---|---|---|---|---|
6o0k | |||||||||
865043 | −50.835 | 865043 | 18.429 | venetoclax | 0.156 | venetoclax | −2.015 | venetoclax | 0.513 |
85734 | −48.062 | 603509 | 20.857 | 865043 | 0.229 | 865043 | −1.676 | 865043 | 0.246 |
58208 | −48.048 | 3848519 | 34.857 | 603509 | 0.272 | 603509 | −1.398 | 603509 | 0.200 |
633318 | −47.648 | 1662017 | 37.286 | gilteritinib | 0.280 | 85734 | −1.238 | 85734 | 0.174 |
57874 | −46.830 | 77098 | 38.857 | 85734 | 0.291 | gilteritinib | −1.225 | 486475 | 0.174 |
3648213 | −46.619 | 85734 | 39.000 | 58208 | 0.292 | 58208 | −1.205 | 58208 | 0.159 |
81232 | −46.535 | venetoclax | 39.429 | 3848519 | 0.298 | 1662017 | −1.193 | 113155 | 0.149 |
357573 | −46.287 | 58208 | 40.571 | 1662017 | 0.301 | 3848519 | −1.158 | 81232 | 0.146 |
486475 | −45.935 | gilteritinib | 49.714 | 563042 | 0.316 | 486475 | −1.043 | 215587 | 0.143 |
563042 | −45.685 | 52645531 | 51.571 | 486475 | 0.319 | 563042 | −0.995 | 1662017 | 0.138 |
865043 | −50.835 | 865043 | 18.429 | venetoclax | 0.156 | venetoclax | −2.015 | venetoclax | 0.513 |
6o0l | |||||||||
24815245 | −56.941 | venetoclax | 6.857 | venetoclax | 0.027 | venetoclax | −2.550 | venetoclax | 0.505 |
venetoclax | −56.263 | gilteritinib | 18.857 | gilteritinib | 0.190 | gilteritinib | −1.562 | 865043 | 0.256 |
gilteritinib | −49.946 | 28782425 | 26.714 | 24815245 | 0.208 | 24815245 | −1.495 | gilteritinib | 0.241 |
865043 | −48.613 | 24815245 | 30.167 | 865043 | 0.217 | 865043 | −1.414 | 604320 | 0.224 |
357573 | −48.304 | 2259963 | 38.714 | 28782425 | 0.228 | 28782425 | −1.318 | 24815245 | 0.217 |
3648213 | −46.160 | 52645531 | 40.000 | 50146 | 0.242 | 50146 | −1.142 | 50146 | 0.212 |
28782425 | −45.071 | 865043 | 40.429 | 67970 | 0.253 | 67970 | −1.122 | 28782425 | 0.172 |
1989522 | −44.955 | 101757 | 45.857 | 531919 | 0.273 | 52645531 | −1.012 | 84640 | 0.160 |
39208009 | −43.894 | 1164165 | 47.857 | 52645531 | 0.275 | 531919 | −0.982 | 3648213 | 0.147 |
28322023 | −43.338 | 67970 | 53.143 | 604320 | 0.284 | 1164165 | −0.948 | 215587 | 0.144 |
24815245 | −56.941 | venetoclax | 6.857 | venetoclax | 0.027 | venetoclax | −2.550 | venetoclax | 0.505 |
6il3 | |||||||||
24815245 | −57.671 | 101757 | 25.143 | 24815245 | 0.224 | 24815245 | −1.458 | 24815245 | 0.230 |
604320 | −51.421 | 52645531 | 30.857 | 101757 | 0.237 | 101757 | −1.374 | 111013 | 0.218 |
59052 | −49.836 | 56495 | 36.857 | 56495 | 0.248 | 56495 | −1.336 | 59052 | 0.210 |
111013 | −49.366 | 531919 | 37.429 | 63077009 | 0.271 | 63077009 | −1.194 | 56495 | 0.168 |
67970 | −47.673 | 642659 | 39.143 | 213467 | 0.274 | 213467 | −1.162 | 101757 | 0.164 |
2432908 | −47.184 | 63077009 | 39.429 | 52645531 | 0.278 | 52645531 | −1.157 | 113155 | 0.141 |
113155 | −46.806 | 24815245 | 39.500 | 531919 | 0.279 | 531919 | −1.153 | 213467 | 0.138 |
865043 | −46.134 | 1843056 | 40.857 | 642659 | 0.279 | 642659 | −1.133 | gilteritinib | 0.133 |
633318 | −45.547 | 67199660 | 42.429 | 897789 | 0.280 | 897789 | −1.125 | 215587 | 0.129 |
83885 | −45.322 | 51234287 | 45.714 | 59052 | 0.281 | 215587 | −1.114 | 1617909 | 0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeniyi, A.A.; Adeniyi, J.N.; Nlooto, M.; Singh, P. Probing New Antileukemia Agents That Target FLT3 and BCL-2 from Traditional Concoctions through a Combination of Mass Spectrometry Analysis and Consensus Docking Methods. Appl. Sci. 2022, 12, 11611. https://doi.org/10.3390/app122211611
Adeniyi AA, Adeniyi JN, Nlooto M, Singh P. Probing New Antileukemia Agents That Target FLT3 and BCL-2 from Traditional Concoctions through a Combination of Mass Spectrometry Analysis and Consensus Docking Methods. Applied Sciences. 2022; 12(22):11611. https://doi.org/10.3390/app122211611
Chicago/Turabian StyleAdeniyi, Adebayo A., Joy Nkechinyere Adeniyi, Manimbulu Nlooto, and Parvesh Singh. 2022. "Probing New Antileukemia Agents That Target FLT3 and BCL-2 from Traditional Concoctions through a Combination of Mass Spectrometry Analysis and Consensus Docking Methods" Applied Sciences 12, no. 22: 11611. https://doi.org/10.3390/app122211611
APA StyleAdeniyi, A. A., Adeniyi, J. N., Nlooto, M., & Singh, P. (2022). Probing New Antileukemia Agents That Target FLT3 and BCL-2 from Traditional Concoctions through a Combination of Mass Spectrometry Analysis and Consensus Docking Methods. Applied Sciences, 12(22), 11611. https://doi.org/10.3390/app122211611