Key Properties for the Toxicity Classification of Chemicals: A Comparison of the REACH Regulation and Scientific Studies Trends
Abstract
:1. Introduction
2. Material and Methods
- -
- Controlled vocabulary thesaurus was used;
- -
- Published safety data were updated by searching publications in peer-reviewed journals;
- -
- Articles had to be published in the period from 2007 (start of the application of the REACH regulation) to August 2022;
- -
- Research areas excluded in the analysis: Film Radio Television OR Audiology Speech Language Pathology OR Religion OR Criminology Penology OR Ethnic Studies OR Rehabilitation OR History Philosophy Of Science OR Astronomy Astrophysics OR Women’s Studies OR Area Studies OR Emergency Medicine OR Medical Ethics OR Mathematical Methods In Social Sciences OR Substance Abuse OR Critical Care Medicine OR Family Studies OR Operations Research Management Science OR Art OR Architecture OR Robotics OR International Relations OR Arts Humanities Other Topics OR Philosophy OR Demography OR History OR Telecommunications OR Psychiatry OR Public Administration OR Mineralogy OR Communication OR Sociology OR Orthopedics OR Anthropology OR Automation Control Systems OR Government Law OR Mining Mineral Processing.
- -
- Physicochemical studies:
- ○
- For the total number of studies related to the evaluation of physicochemical properties, the searching query was “physicochemical properties”.
- ○
- For the studies related to the environment AND sustainability, the searching query was “physicochemical properties” AND (environmental OR “environmental risk” OR green OR sustain*).
- -
- Ecotoxicological studies: ecotox* AND (short-term OR acute//long-term or chronic) and subheadings: (aquatic//terrestrial//aerial).
- -
- Toxicological studies: consideration was given to avoid the appearance of ecotoxicological studies on these properties, discarding environmentally related terms: tox* NOT environment* AND (in vitro//in vivo) and other subheadings such as acute toxic*, subchronic, chronic, and mutagen*, related to toxicological studies.
3. Chemical Properties and Safety Assessment Tests Required under the REACH
3.1. Physicochemical Properties
3.2. Ecotoxicological Information
3.3. Toxicological Information
4. Chemical’s Toxicity Assessment Studies Aligned with Regulatory Requirements
4.1. Physicochemical Properties
4.2. Ecotoxicological Information
4.3. Toxicological Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vargesson, N. Thalidomide-induced Teratogenesis: History and Mechanisms. Birth Defects Res. 2015, 105, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998; p. 148. [Google Scholar]
- Bopp, S.K.; Kienzler, A.; Richarz, A.N.; van der Linden, S.C.; Paini, A.; Parissis, N.; Worth, A.P. Regulatory Assessment and Risk Management of Chemical Mixtures: Challenges and Ways Forward. Crit. Rev. Toxicol. 2019, 49, 174–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Understanding REACH-ECHA. Available online: https://echa.europa.eu/regulations/reach/understanding-reach (accessed on 10 November 2022).
- Giner, B.; Gascón, I.; Artigas, H.; Royo, F.M.; Lafuente, C. Surface Behavior of the 1-Bromobutane with Isomeric Butanol Mixtures. J. Phys. Chem. B 2005, 109, 23096–23102. [Google Scholar] [CrossRef]
- Giner, B.; Aldea, M.E.; Martín, S.; Gascón, I.; Lafuente, C. Viscosities of Binary Mixtures of Isomeric Butanols or Isomeric Chlorobutanes with 2-Methyltetrahydrofuran. J. Chem. Eng. Data 2003, 48, 1296–1300. [Google Scholar] [CrossRef]
- Romero, C.; Giner, B.; Haro, M.; Artigas, H.; Lafuente, C. Thermophysical Study of 1,4-Dioxane with Cycloalkane Mixtures. J. Chem. Thermodyn. 2006, 38, 871–878. [Google Scholar] [CrossRef]
- Giner, B.; Artigas, H.; Carrión, A.; Lafuente, C.; Royo, F.M. Excess Thermodynamic Properties of Isomeric Butanols with 2-Methyl-Tetrahydrofuran. J. Mol. Liq. 2003, 108, 303–311. [Google Scholar] [CrossRef]
- Giner, B.; Gascón, I.; Villares, A.; Cea, P.; Lafuente, C. Densities and Viscosities of the Binary Mixtures of Tetrahydrofuran with Isomeric Chlorobutanes at 298.15 K and 313.15 K. J. Chem. Eng. Data 2006, 51, 1321–1325. [Google Scholar] [CrossRef]
- Giner, I.; Montaño, D.; Haro, M.; Artigas, H.; Lafuente, C. Study of Isobaric Vapour–Liquid Equilibrium of Some Cyclic Ethers with 1-Chloropropane: Experimental Results and SAFT-VR Modelling. Fluid Phase Equilib. 2009, 278, 62–67. [Google Scholar] [CrossRef]
- Roy, K.; Das, R.N.; Popelier, P.L.A. Predictive QSAR Modelling of Algal Toxicity of Ionic Liquids and Its Interspecies Correlation with Daphnia Toxicity. Environ. Sci. Pollut. Res. 2015, 22, 6634–6641. [Google Scholar] [CrossRef]
- Antón, V.; Muñoz-Embid, J.; Gascón, I.; Artal, M.; Lafuente, C. Thermophysical Characterization of Furfuryl Esters: Experimental and Modeling. Energy Fuels 2017, 31, 4143–4154. [Google Scholar] [CrossRef]
- Giner, B.; Royo, F.M.; Lafuente, C.; Galindo, A. Intermolecular Potential Model Parameters for Cyclic Ethers and Chloroalkanes in the SAFT-VR Approach. Fluid Phase Equilib. 2007, 255, 200–206. [Google Scholar] [CrossRef]
- Poveda, J. Cyanobacteria in Plant Health: Biological Strategy against Abiotic and Biotic Stresses. Crop Prot. 2021, 141, 105450. [Google Scholar] [CrossRef]
- Gu, W.; Li, X.; Du, M.; Ren, Z.; Li, Q.; Li, Y. Identification and Regulation of Ecotoxicity of Polychlorinated Naphthalenes to Aquatic Food Chain (Green Algae-Daphnia Magna-Fish). Aquat. Toxicol. 2021, 233, 105774. [Google Scholar] [CrossRef]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and Associated Contaminants in the Aquatic Environment: A Review on Their Ecotoxicological Effects, Trophic Transfer, and Potential Impacts to Human Health. J. Hazard. Mater. 2021, 405, 124187. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 201: Alga, Growth Inhibition Test; OECD: Paris, France, 2006. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test; OECD: Paris, France, 2004. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 203: Fish, Acute Toxicity Test; OECD: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test; OECD: Paris, France, 2006. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 207: Earthworm, Acute Toxicity Tests; OECD: Paris, France, 1984. [Google Scholar] [CrossRef]
- OECD. Test No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei); OECD: Paris, France, 2016. [Google Scholar] [CrossRef]
- OECD. Test No. 216: Soil Microorganisms: Nitrogen Transformation Test; OECD: Paris, France, 2000. [Google Scholar] [CrossRef]
- OECD. Test No. 217: Soil Microorganisms: Carbon Transformation Test; OECD: Paris, France, 2000. [Google Scholar] [CrossRef]
- Marquart, H. Practical Guide for SME Managers and REACH Coordinators: How to Fulfil Your Information Requirements at Tonnages 1–10 and 10–100 Tonnes per Year; Version 1.0-July 2016; 2 Practical Guide for SME Managers and REACH Coordinators LEGAL NOTICE Body Text Practic; European Chemicals Agency: Helsinki, Finland, 2016. [Google Scholar] [CrossRef]
- OECD. Test No. 111: Hydrolysis as a Function of PH; OECD: Paris, France, 2004. [Google Scholar] [CrossRef]
- OECD. Test No. 106: Adsorption-Desorption Using a Batch Equilibrium Method; OECD: Paris, France, 2000. [Google Scholar] [CrossRef]
- OECD. Test No. 121: Estimation of the Adsorption Coefficient (Koc) on Soil and on Sewage Sludge Using High Performance Liquid Chromatography (HPLC); OECD: Paris, France, 2001. [Google Scholar] [CrossRef]
- OECD. Test No. 209: Activated Sludge, Respiration Inhibition Test; OECD: Paris, France, 1984. [Google Scholar] [CrossRef]
- OECD. Guidelines for the Testing of Chemicals, Section 4: Health Effects | OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 2006. [Google Scholar] [CrossRef]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; OECD: Paris, France, 2020. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 476: In Vitro Mammalian Cell Gene Mutation Test; OECD: Paris, France, 1997. [Google Scholar] [CrossRef]
- OECD. Test No. 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene; OECD: Paris, France, 2015. [Google Scholar] [CrossRef]
- OECD. Test No. 417: Toxicokinetics; OECD: Paris, France, 2010. [Google Scholar] [CrossRef]
- OECD. Test No. 403: Acute Inhalation Toxicity; OECD: Paris, France, 2009. [Google Scholar] [CrossRef]
- OECD. Test No. 402: Acute Dermal Toxicity; OECD: Paris, France, 2017. [Google Scholar] [CrossRef]
- National Research Council. Toxicity Testing in the 21st Century: A Vision and a Strategy; The National Academies Press: Washington, DC, USA, 2007; p. 216. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I.; van Hullebusch, E.D. Pharmaceuticals’ Removal by Constructed Wetlands: A Critical Evaluation and Meta-Analysis on Performance, Risk Reduction, and Role of Physicochemical Properties on Removal Mechanisms. J. Water Health 2020, 18, 253–291. [Google Scholar] [CrossRef]
- Kuramochi, H.; Takigami, H.; Scheringer, M.; Sakai, S. ichi Estimation of Physicochemical Properties of 52 Non-PBDE Brominated Flame Retardants and Evaluation of Their Overall Persistence and Long-Range Transport Potential. Sci. Total Environ. 2014, 491–492, 108–117. [Google Scholar] [CrossRef]
- Ariba, H.; Wang, Y.; Devouge-Boyer, C.; Stateva, R.P.; Leveneur, S. Physicochemical Properties for the Reaction Systems: Levulinic Acid, Its Esters, and γ-Valerolactone. J. Chem. Eng. Data 2020, 65, 3008–3020. [Google Scholar] [CrossRef]
- Azelmad, K.; Hamadi, F.; Mimouni, R.; El Boulani, A.; Amzil, K.; Latrache, H. Physicochemical Characterization of Pseudomonas aeruginosa Isolated from Catering Substratum Surface and Investigation of Their Theoretical Adhesion. Surf. Interfaces 2018, 12, 26–30. [Google Scholar] [CrossRef]
- Raja, V.; Shanmugasundaram, S. Development of Capacitance Based Nondestructive Ripening Indices Measurement System for Sapota (Manilkara zapota). J. Food Process Eng. 2020, 43, e13307. [Google Scholar] [CrossRef]
- Gemeda, F.T.; Guta, D.D.; Wakjira, F.S.; Gebresenbet, G. Physicochemical Characterization of Effluents from Industries in Sabata Town of Ethiopia. Heliyon 2020, 6, e04624. [Google Scholar] [CrossRef]
- Yu, Y.; Luan, Y.; Dai, W. Time Evolution of Protein Corona Formed by Polystyrene Nanoplastics and Urease. Int. J. Biol. Macromol. 2022, 218, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Lehutso, R.F.; Thwala, M. Assessment of Nanopollution from Commercial Products in Water Environments. Nanomaterials 2021, 11, 2537. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Kim, S.; Amr, I.T.; Seo, J.; Jang, D.; Bamagain, R.; Fadhel, B.A.; Abu-Aisheh, E.; Lee, H.K. Evaluation of Physicochemical Properties and Environmental Impact of Environmentally Amicable Portland Cement/Metakaolin Bricks Exposed to Humid or CO2 Curing Condition. J. Build. Eng. 2022, 47, 103831. [Google Scholar] [CrossRef]
- Lorite, G.S.; Rocha, J.M.; Miilumäki, N.; Saavalainen, P.; Selkälä, T.; Morales-Cid, G.; Gonçalves, M.P.; Pongrácz, E.; Rocha, C.M.R.; Toth, G. Evaluation of Physicochemical/Microbial Properties and Life Cycle Assessment (LCA) of PLA-Based Nanocomposite Active Packaging. LWT 2017, 75, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Laurent, A.; Harkema, J.R.; Andersen, E.W.; Owsianiak, M.; Vea, E.B.; Jolliet, O. Human Health No-Effect Levels of TiO2 Nanoparticles as a Function of Their Primary Size. J. Nanopart. Res. 2017, 19, 130. [Google Scholar] [CrossRef] [Green Version]
- Baysal, A.; Saygin, H.; Ustabasi, G.S. Influence of Environmental Media on Carbon Nanotubes and Graphene Nanoplatelets towards Bacterial Toxicity. Arch. Environ. Prot. 2018, 44, 85–98. [Google Scholar] [CrossRef]
- Meesters, J.A.J.; Peijnenburg, W.J.G.M.; Hendriks, A.J.; van de Meent, D.; Quik, J.T.K. A Model Sensitivity Analysis to Determine the Most Important Physicochemical Properties Driving Environmental Fate and Exposure of Engineered Nanoparticles. Environ. Sci. Nano 2019, 6, 2049–2060. [Google Scholar] [CrossRef]
- Lomba, L.; Ribate, M.P.; Zuriaga, E.; García, C.B.; Giner, B. Acute and Subacute Effects of Drugs in Embryos of Danio Rerio. QSAR Grouping and Modelling. Ecotoxicol. Environ. Saf. 2019, 172, 232–239. [Google Scholar] [CrossRef]
- Zuriaga, E.; Lomba, L.; Royo, F.M.; Lafuente, C.; Giner, B. Aggregation Behaviour of Betablocker Drugs in Aqueous Media. New J. Chem. 2014, 38, 4141–4148. [Google Scholar] [CrossRef]
- Brito, R.O.; Marques, E.F.; Silva, S.G.; do Vale, M.L.; Gomes, P.; Araújo, M.J.; Rodriguez-Borges, J.E.; Infante, M.R.; Garcia, M.T.; Ribosa, I.; et al. Physicochemical and Toxicological Properties of Novel Amino Acid-Based Amphiphiles and Their Spontaneously Formed Catanionic Vesicles. Colloids Surf. B Biointerfaces 2009, 72, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Al-Khazrajy, O.S.A.; Abdallh, M. Sorption and Degradation of Ranitidine in Soil: Leaching Potential Assessment. Chemosphere 2020, 259, 127495. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bayo, F.; Hyne, R.V. Comparison of Environmental Risks of Pesticides between Tropical and Nontropical Regions. Integr. Environ. Assess. Manag. 2011, 7, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Olguin, C.J.M.; Sampaio, S.C.; dos Reis, R.R.; Remor, M.B.; Olguin, C.F.A. QSPR Modelling of the Soil Sorption Coefficient from Training Sets of Different Sizes. SAR QSAR Environ. Res. 2019, 30, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Umar, R. Environmental Risk Assessment of Coal Fly Ash on Soil and Groundwater Quality, Aligarh, India. Groundw. Sustain. Dev. 2019, 8, 346–357. [Google Scholar] [CrossRef]
- He, M.; Xiong, X.; Wang, L.; Hou, D.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Tsang, D.C.W. A Critical Review on Performance Indicators for Evaluating Soil Biota and Soil Health of Biochar-Amended Soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef]
- Ghaedi, A. Predicting the Cytotoxicity of Ionic Liquids Using QSAR Model Based on SMILES Optimal Descriptors. J. Mol. Liq. 2015, 208, 269–279. [Google Scholar] [CrossRef]
- Giner, B.; Lafuente, C.; Lapeña, D.; Errazquin, D.; Lomba, L. QSAR Study for Predicting the Ecotoxicity of NADES towards Aliivibrio Fischeri. Exploring the Use of Mixing Rules. Ecotoxicol. Environ. Saf. 2020, 191, 110004. [Google Scholar] [CrossRef]
- Zuriaga, E.; Giner, B.; Ribate, M.P.; García, C.B.; Lomba, L. Exploring the Usefulness of Key Green Physicochemical Properties: Quantitative Structure–Activity Relationship for Solvents from Biomass. Environ. Toxicol. Chem. 2018, 37, 1014–1023. [Google Scholar] [CrossRef]
- Stanton, D.T.; Dimitrov, S.; Grancharov, V.; Mekenyan, O.G. Charged Partial Surface Area (CPSA) Descriptors QSAR Applications. SAR QSAR Environ. Res. 2002, 13, 341–351. [Google Scholar] [CrossRef]
- Nagpal, M.A. Tiwari QSAR Analysis of Substituted Benzylideneacetophenones as Lipid Peroxidation Inhibitors. Asian J. Chem. 2025, 17, 1669–1677. [Google Scholar]
- Zuriaga, E.; Giner, B.; Valero, M.S.; Gómez, M.; García, C.B.; Lomba, L. QSAR Modelling for Predicting the Toxic Effects of Traditional and Derived Biomass Solvents on a Danio Rerio Biomodel. Chemosphere 2019, 227, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Schenker, U.; Scheringer, M.; Hungerbühler, K. Investigating the Global Fate of DDT: Model Evaluation and Estimation of Future Trends. Environ. Sci. Technol. 2008, 42, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Altamirano, R.; Mena-Cervantes, V.Y.; Perez-Miranda, S.; Fernández, F.J.; Flores-Sandoval, C.A.; Barba, V.; Beltrán, H.I.; Zamudio-Rivera, L.S. Molecular Design and QSAR Study of Low Acute Toxicity Biocides with 4,4′-Dimorpholyl-Methane Core Obtained by Microwave-Assisted Synthesis. Green Chem. 2010, 12, 1036–1048. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Wang, J.; Dong, Y.; Che, W.; Li, X. Acute Toxicity of Broflanilide on Neurosecretory System and Locomotory Behavior of Zebrafish (Danio rerio). Chemosphere 2022, 305, 135426. [Google Scholar] [CrossRef]
- Wang, S.; Han, X.; Yu, T.; Liu, Y.; Zhang, H.; Mao, H.; Hu, C.; Xu, X. Isoprocarb Causes Neurotoxicity of Zebrafish Embryos through Oxidative Stress-Induced Apoptosis. Ecotoxicol. Environ. Saf. 2022, 242, 113870. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, C.; Wang, L.; Wang, X.; He, H.; Wu, S.; Zhao, X. Insights into the Combined Effects of Environmental Concentration of Difenoconazole and Tebuconazole on Zebrafish Early Life Stage. Sci. Total Environ. 2022, 830, 154687. [Google Scholar] [CrossRef]
- He, R.; Guo, D.; Lin, C.; Zhang, W.-G.; Fan, J. Enantioselective Bioaccumulation, Oxidative Stress, and Thyroid Disruption Assessment of Cis-Metconazole Enantiomers in Zebrafish (Danio rerio). Aquat. Toxicol. 2022, 248, 106205. [Google Scholar] [CrossRef]
- Santos-Silva, T.; de Azambuja Ribeiro, R.I.M.; Alves, S.N.; Thomé, R.G.; Santos, H.B. Dos Assessment of the Toxicological Effects of Pesticides and Detergent Mixtures on Zebrafish Gills: A Histological Study. Braz. Arch. Biol. Technol. 2021, 64. [Google Scholar] [CrossRef]
- He, X.; Han, M.; Zhan, W.; Liu, F.; Guo, D.; Zhang, Y.; Liang, X.; Wang, Y.; Lou, B. Mixture Effects of Imidacloprid and Difenconazole on Enzymatic Activity and Gene Expression in Small Yellow Croakers (Larimichthys polyactis). Chemosphere 2022, 306, 135551. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Wang, Z.; Ren, Y.; Mu, Y.; Zhang, X.; van den Brink, P.J.; Sun, H.; Song, Y.; Cheng, B.; et al. Acute Toxicity, Bioaccumulation and Elimination of Prometryn in Tilapia (Oreochromis niloticus). Chmsp 2022, 300, 134565. [Google Scholar] [CrossRef]
- Horie, Y.; Takahashi, C. Development of an in Vivo Acute Bioassay Using the Marine Medaka Oryzias Melastigma. Environ. Monit. Assess. 2021, 193, 725. [Google Scholar] [CrossRef] [PubMed]
- Cormier, B.; Cachot, J.; Blanc, M.; Cabar, M.; Clérandeau, C.; Dubocq, F.; Le Bihanic, F.; Morin, B.; Zapata, S.; Bégout, M.L.; et al. Environmental Microplastics Disrupt Swimming Activity in Acute Exposure in Danio rerio Larvae and Reduce Growth and Reproduction Success in Chronic Exposure in D. rerio and Oryzias melastigma. Environ. Pollut. 2022, 308, 119721. [Google Scholar] [CrossRef] [PubMed]
- Shariatzadeh, S.; Emadi, H.; Jamili, S.; Mashinchian Moradi, A. Research Article: Pathological and Genotoxic Effects of the Herbicide Oxadiargyl on Common Carp (Cyprinus carpio) Fingerlings. Iran. J. Fish. Sci. 2022, 21, 316–330. [Google Scholar] [CrossRef]
- Al-Thomali, A.W.; Tag, H.M.; Mohammadein, A.; El-Shenawy, N.S.; El-Naggar, M.S. Mercaptophos Impacts on Redox Status Biomarkers of Common Carp (Cyprinus carpio) as an Endocrine Disruptor. Aquac. Reports 2022, 22, 100959. [Google Scholar] [CrossRef]
- Vali, S.; Majidiyan, N.; Yalsuyi, A.M.; Vajargah, M.F.; Prokić, M.D.; Faggio, C. Ecotoxicological Effects of Silver Nanoparticles (Ag-NPs) on Parturition Time, Survival Rate, Reproductive Success and Blood Parameters of Adult Common Molly (Poecilia sphenops) and Their Larvae. Water 2022, 14, 144. [Google Scholar] [CrossRef]
- Cantanhêde, S.M.; de Carvalho, I.S.C.; Hamoy, M.; Corrêa, J.A.M.; de Carvalho, L.M.; Barbas, L.A.L.; de Assis Montag, L.F.; Amado, L.L. Evaluation of Cardiotoxicity in Amazonian Fish Bryconops Caudomaculatus by Acute Exposure to Aluminium in an Acidic Environment. Aquat. Toxicol. 2022, 242, 106044. [Google Scholar] [CrossRef]
- Liu, Y.H.; Lv, Y.Z.; Huang, Z.; Guan, Y.F.; Huang, J.W.; Zhao, J.L.; Ying, G.G. Uptake, Elimination, and Toxicokinetics of Selected Pharmaceuticals in Multiple Tissues of Nile Tilapia (Oreochromis niloticus) Exposed to Environmentally Relevant Concentrations. Ecotoxicol. Environ. Saf. 2021, 226, 112874. [Google Scholar] [CrossRef]
- Renick, V.C.; Anderson, T.W.; Morgan, S.G.; Cherr, G.N. Interactive Effects of Pesticide Exposure and Habitat Structure on Behavior and Predation of a Marine Larval Fish. Ecotoxicology 2015, 24, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Makaras, T.; Stankevičiūtė, M. Swimming Behaviour in Two Ecologically Similar Three-Spined (Gasterosteus aculeatus L.) and Nine-Spined Sticklebacks (Pungitius pungitius L.): A Comparative Approach for Modelling the Toxicity of Metal Mixtures. Environ. Sci. Pollut. Res. Int. 2022, 29, 14479–14496. [Google Scholar] [CrossRef]
- Seben, D.; Salbego, J.; da Silva, E.G.; Gressler, L.T.; Baldisserotto, B.; Marchesan, E.; Zanella, R.; Loro, V.L.; Clasen, B.E.; Golombieski, J.I. Acute Silver Catfish (Rhamdia quelen) Exposure to Chlorantraniliprole Insecticide. Bull. Environ. Contam. Toxicol. 2021, 107, 883–888. [Google Scholar] [CrossRef]
- Ramírez-Morales, D.; Fajardo-Romero, D.; Rodríguez-Rodríguez, C.E.; Cedergreen, N. Single and Mixture Toxicity of Selected Pharmaceuticals to the Aquatic Macrophyte Lemna Minor. Ecotoxicology 2022, 31, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Loll, A.; Reinwald, H.; Ayobahan, S.U.; Göckener, B.; Salinas, G.; Schäfers, C.; Schlich, K.; Hamscher, G.; Eilebrecht, S. Short-Term Test for Toxicogenomic Analysis of Ecotoxic Modes of Action in Lemna Minor. Environ. Sci. Technol. 2022, 56, 11504–11515. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jin, L.; Zhong, Y.; Ji, G. Effects of Enrofloxacin on the Epiphytic Algal Communities Growing on the Leaf Surface of Vallisneria natans. Antibiotics 2022, 11, 1020. [Google Scholar] [CrossRef] [PubMed]
- Tongur, S.; Yıldız, S. Toxicity Tests Using Flurbiprofen, Naproxen, Propranolol, and Carbamazepine on Lepidium sativum, Daphnia magna, and Aliivibrio fischeri. Desalination Water Treat. 2021, 221, 359–366. [Google Scholar] [CrossRef]
- Guler, U.A.; Solmaz, B. Biosorption of Tetracycline and Cephalexin onto Surfactant-Modified Waste Biomass Using Response Surface Methodology and Ecotoxicological Assessment: Phytotoxicity and Biotoxicity Studies. Water. Air. Soil Pollut. 2022, 233, 117. [Google Scholar] [CrossRef]
- Dumont, E.R.; Elger, A.; Azéma, C.; Castillo Michel, H.; Surble, S.; Larue, C. Cutting-Edge Spectroscopy Techniques Highlight Toxicity Mechanisms of Copper Oxide Nanoparticles in the Aquatic Plant Myriophyllum spicatum. Sci. Total Environ. 2021, 803, 150001. [Google Scholar] [CrossRef]
- Eluk, D.; Nagel, O.; Gagneten, A.; Reno, U.; Althaus, R. Toxicity of Fluoroquinolones on the Cladoceran Daphnia magna. Water Environ. Res. 2021, 93, 2914–2930. [Google Scholar] [CrossRef]
- Olivares-Ferretti, P.; Chavez, V.; Hernandez, K.; Peredo-Parada, M.; Parodi, J. Polyphenols Extracts from Didymosphenia geminata (Lyngbye) Schmidt Altered the Motility and Viability of Daphnia magna. Aquat. Ecol. 2022, 56, 35–45. [Google Scholar] [CrossRef]
- Labine, L.M.; Oliveira Pereira, E.A.; Kleywegt, S.; Jobst, K.J.; Simpson, A.J.; Simpson, M.J.; Labine, L.M.; Oliveira Pereira, E.A.; Kleywegt, S.; Jobst, K.J.; et al. Comparison of Sub-Lethal Metabolic Perturbations of Select Legacy and Novel Perfluorinated Alkyl Substances (PFAS) in Daphnia magna. Environ. Res. 2022, 212, 113582. [Google Scholar] [CrossRef]
- Lomba, L.; Lapeña, D.; Ros, N.; Aso, E.; Cannavò, M.; Errazquin, D.; Giner, B. Ecotoxicological Study of Six Drugs in Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata. Environ. Sci. Pollut. Res. Int. 2020, 27, 9891–9900. [Google Scholar] [CrossRef]
- Lapeña, D.; Errazquin, D.; Lomba, L.; Lafuente, C.; Giner, B. Ecotoxicity and Biodegradability of Pure and Aqueous Mixtures of Deep Eutectic Solvents: Glyceline, Ethaline, and Reline. Environ. Sci. Pollut. Res. 2020, 28, 8812–8821. [Google Scholar] [CrossRef] [PubMed]
- Kalčíková, G.; Zagorc-Končan, J.; Gotvajn, A.Ž. Artemia Salina Acute Immobilization Test: A Possible Tool for Aquatic Ecotoxicity Assessment. Water Sci. Technol. 2012, 66, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zheng, J.; Xi, J.; Yang, J.; Wang, L.; Xiong, D. Evaluation of the Acute Toxic Response Induced by Triazophos to the Non-Target Green Algae Chlorella Pyrenoidosa. Pestic. Biochem. Physiol. 2022, 182, 105036. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Gonçalves, A.L.; Gebara, R.C.; da Silva Mansano, A.; Rocha, G.S.; da Graça Gama, M. Individual and Combined Effects of Manganese and Chromium on a Freshwater Chlorophyceae. Environ. Toxicol. Chem. 2022, 41, 1004–1015. [Google Scholar] [CrossRef]
- Garralaga, M.P.; Lomba, L.; Leal-Duaso, A.; Gracia-Barberán, S.; Pires, E.; Giner, B. Ecotoxicological Study of Bio-Based Deep Eutectic Solvents Formed by Glycerol Derivatives in Two Aquatic Biomodels. Green Chem. 2022, 24, 5228–5241. [Google Scholar] [CrossRef]
- Fekete-Kertész, I.; Ullmann, O.; Csizmár, P.; Molnár, M. Tetrahymena Pyriformis Phagocytic Activity Test for Rapid Toxicity Assessment of Aquatic Micropollutants. Period. Polytech. Chem. Eng. 2018, 62, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y.; Zhao, Y.; Du, M.; Wang, Y.; Fan, J.; Ren, N.; Lee, D.J. Toxicity of Two Tetracycline Antibiotics on Stentor Coeruleus and Stylonychia Lemnae: Potential Use as Toxicity Indicator. Chemosphere 2020, 255, 127011. [Google Scholar] [CrossRef]
- Do Amaral VilasBoas, L.; Senra, M.V.X.; Fernandes, K.; da Anunciação Gomes, A.M.; Pedroso Dias, R.J.; Pinto, E.; Fonseca, A.L. In Vitro Toxicity of Isolated Strains and Cyanobacterial Bloom Biomasses over Paramecium caudatum (Ciliophora): Lessons from a Non-Metazoan Model Organism. Ecotoxicol. Environ. Saf. 2020, 202, 110937. [Google Scholar] [CrossRef]
- Gendron, A. Amphibian Ecotoxicology. In Encyclopedia of Aquatic Ecotoxicology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–38. [Google Scholar]
- Brühl, C.A.; Pieper, S.; Weber, B. Amphibians at Risk? Susceptibility of Terrestrial Amphibian Life Stages to Pesticides. Environ. Toxicol. Chem. 2011, 30, 2465–2472. [Google Scholar] [CrossRef]
- Yu, S.; Wages, M.R.; Cai, Q.; Maul, J.D.; Cobb, G.P. Lethal and Sublethal Effects of Three Insecticides on Two Developmental Stages of Xenopus laevis and Comparison with Other Amphibians. Environ. Toxicol. Chem. 2013, 32, 2056–2064. [Google Scholar] [CrossRef]
- Spirhanzlova, P.; Leemans, M.; Demeneix, B.A.; Fini, J.B. Following Endocrine-Disrupting Effects on Gene Expression in Xenopus laevis. Cold Spring Harb. Protoc. 2019, 2019, pdb.prot098301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boğa, A.; Binokay, S.; Sertdemir, Y. The Toxicity and Teratogenicity of Gibberellic Acid (GA 3) Based on the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Turk. J. Biol. 2009, 33, 181–188. [Google Scholar] [CrossRef]
- Webber, N.R.; Boone, M.D.; Distel, C.A. Effects of Aquatic and Terrestrial Carbaryl Exposure on Feeding Ability, Growth, and Survival of American Toads. Environ. Toxicol. Chem. 2010, 29, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.R.; Krishnamurthy, S.V.; Burger, A.C.; Mills, L.B. Differential Effects of Malathion and Nitrate Exposure on American Toad and Wood Frog Tadpoles. Arch. Environ. Contam. Toxicol. 2011, 60, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Bracher, G.A.; Bider, J.R. Bider Changes in Terrestrial Animal Activity of a Forest Commuity after an Application of Aminocarb (Matacil). CalEcotox 1982, 60, 1981–1997. [Google Scholar]
- Campbell, K.S.; Keller, P.G.; Heinzel, L.M.; Golovko, S.A.; Seeger, D.R.; Golovko, M.Y.; Kerby, J.L. Detection of Imidacloprid and Metabolites in Northern Leopard Frog (Rana pipiens) Brains. Sci. Total Environ. 2022, 813, 152424. [Google Scholar] [CrossRef]
- Lewis, J.L.; Agostini, G.; Jones, D.K.; Relyea, R.A. Cascading Effects of Insecticides and Road Salt on Wetland Communities. Environ. Pollut. 2021, 272, 116006. [Google Scholar] [CrossRef]
- Baker, K.N. Laboratory and Field Experiments on the Responses by Two Species of Woodland Salamanders to Malathion-Treated Substrates. Arch. Environ. Contam. Toxicol. 1985, 14, 685–691. [Google Scholar] [CrossRef]
- Taylor, S.K.; Williams, E.S.; Mills, K.W. Effects of Malathion on Disease Susceptibility in Woodhouse’s Toads. J. Wildl. Dis. 1999, 35, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Bernal, M.H.; Solomon, K.R.; Carrasquilla, G. Toxicity of Formulated Glyphosate (Glyphos) and Cosmo-Flux to Larval and Juvenile Colombian Frogs 2. Field and Laboratory Microcosm Acute Toxicity. J. Toxicol. Environ. Health A 2009, 72, 966–973. [Google Scholar] [CrossRef]
- Leiva-Presa, À.; Jenssen, B.M. Effects of p,p′-DDE on Retinoid Homeostasis and Sex Hormones of Adult Male European Common Frogs (Rana temporaria). J. Toxicol. Environ. Health A 2006, 69, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.; Bruhl, C.A. Fungicide Exposure Induces Sensitivity Differences in Aquatic Life Stages of European Common Frogs (Rana temporaria). S. Am. J. Herpetol. 2020, 54, 331–336. [Google Scholar] [CrossRef]
- Bundschuh, M.; Zubrod, J.P.; Wernicke, T.; Konschak, M.; Werner, L.; Brühl, C.A.; Baudy, P.; Schulz, R. Bottom-up Effects of Fungicides on Tadpoles of the European Common Frog (Rana temporaria). Ecol. Evol. 2021, 11, 4353–4365. [Google Scholar] [CrossRef] [PubMed]
- Moreton, M.L.; Marlatt, V.L. Toxicity of the Aquatic Herbicide, Reward®, to the Northwestern Salamander. Environ. Sci. Pollut. Res. Int. 2019, 26, 31077–31085. [Google Scholar] [CrossRef]
- Flynn, R.W.; Hoover, G.; Iacchetta, M.; Guffey, S.; de Perre, C.; Huerta, B.; Li, W.; Hoverman, J.T.; Lee, L.; Sepúlveda, M.S. Comparative Toxicity of Aquatic Per- and Polyfluoroalkyl Substance Exposure in Three Species of Amphibians. Environ. Toxicol. Chem. 2022, 41, 1407–1415. [Google Scholar] [CrossRef]
- Flynn, R.W.; Hoskins, T.D.; Iacchetta, M.; de Perre, C.; Lee, L.S.; Hoverman, J.T.; Sepulveda, M.S. Dietary Exposure and Accumulation of Per- and Polyfluoroalkyl Substances Alters Growth and Reduces Body Condition of Post-Metamorphic Salamanders. Sci. Total Environ. 2021, 765, 142730. [Google Scholar] [CrossRef]
- Henson-Ramsey, H.; Kennedy-Stoskopf, S.; Levine, J.F.; Taylor, S.K.; Shea, D.; Stoskopf, M.K. Acute Toxicity and Tissue Distributions of Malathion in Ambystoma tigrinum. Arch. Environ. Contam. Toxicol. 2008, 55, 481–487. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Dawood, M.A.O.; Menanteau-Ledouble, S.; El-Matbouli, M. Environmental Transformation of N-TiO2 in the Aquatic Systems and Their Ecotoxicity in Bivalve Mollusks: A Systematic Review. Ecotoxicol. Environ. Saf. 2020, 200, 110776. [Google Scholar] [CrossRef]
- Fan, X.; Wang, C.; Wang, P.; Hu, B.; Wang, X. TiO2 Nanoparticles in Sediments: Effect on the Bioavailability of Heavy Metals in the Freshwater Bivalve Corbicula fluminea. J. Hazard. Mater. 2018, 342, 41–50. [Google Scholar] [CrossRef]
- Fan, X.; Wang, P.; Wang, C.; Hu, B.; Wang, X. Lead Accumulation (Adsorption and Absorption) by the Freshwater Bivalve Corbicula fluminea in Sediments Contaminated by TiO2 Nanoparticles. Environ. Pollut. 2017, 231, 712–721. [Google Scholar] [CrossRef]
- Saidani, W.; Sellami, B.; Khazri, A.; Mezni, A.; Dellali, M.; Joubert, O.; Sheehan, D.; Beyrem, H. Metal Accumulation, Biochemical and Behavioral Responses on the Mediterranean Clams Ruditapes Decussatus Exposed to Two Photocatalyst Nanocomposites (TiO2 NPs and AuTiO2 NPs). Aquat. Toxicol. 2019, 208, 71–79. [Google Scholar] [CrossRef]
- Marisa, I.; Marin, M.G.; Caicci, F.; Franceschinis, E.; Martucci, A.; Matozzo, V. In Vitro Exposure of Haemocytes of the Clam Ruditapes philippinarum to Titanium Dioxide (TiO2) Nanoparticles: Nanoparticle Characterisation, Effects on Phagocytic Activity and Internalisation of Nanoparticles into Haemocytes. Mar. Environ. Res. 2015, 103, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Marisa, I.; Matozzo, V.; Martucci, A.; Franceschinis, E.; Brianese, N.; Marin, M.G. Bioaccumulation and Effects of Titanium Dioxide Nanoparticles and Bulk in the Clam Ruditapes philippinarum. Mar. Environ. Res. 2018, 136, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhang, Y.; Song, C.; Zhu, X.; Xing, B. Bioaccumulation and Biotransformation of Polybrominated Diphenyl Ethers in the Marine Bivalve (Scapharca subcrenata): Influence of Titanium Dioxide Nanoparticles. Mar. Pollut. Bull. 2015, 90, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Abbott Chalew, T.E.; Galloway, J.F.; Graczyk, T.K. Pilot Study on Effects of Nanoparticle Exposure on Crassostrea virginica Hemocyte Phagocytosis. Mar. Pollut. Bull. 2012, 64, 2251–2253. [Google Scholar] [CrossRef]
- Doyle, J.J.; Ward, J.E.; Wikfors, G.H. Acute Exposure to TiO2 Nanoparticles Produces Minimal Apparent Effects on Oyster, Crassostrea virginica (Gmelin), Hemocytes. Mar. Pollut. Bull. 2018, 127, 512–523. [Google Scholar] [CrossRef]
- Hagiwara, A.; Yoshinaga, T. Rotifers: Aquaculture, Ecology, Gerontology, and Ecotoxicology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 149–176. [Google Scholar]
- Snell, T.W.; Joaquim-Justo, C. Workshop on Rotifers in Ecotoxicology. Hydrobiologia 2007, 593, 227–232. [Google Scholar] [CrossRef]
- Arreguin Rebolledo, U.; Nandini, S.; Sarma, S.S.S.; Escobar-Sánchez, O. Effect of Salinity and Temperature on the Acute and Chronic Toxicity of Arsenic to the Marine Rotifers Proales similis and Brachionus ibericus. Mar. Pollut. Bull. 2020, 157, 111341. [Google Scholar] [CrossRef]
- Xu, X.P.; Xi, Y.L.; Huang, L.; Xiang, X.L. Effects of Multi-Metal (Cu, Zn, Cd, Cr, and Mn) Mixtures on the Reproduction of Freshwater Rotifer Brachionus Calyciflorus. Bull. Environ. Contam. Toxicol. 2015, 95, 714–720. [Google Scholar] [CrossRef]
- Kostopoulou, V.; Carmona, M.J.; Divanach, P. The Rotifer Brachionus Plicatilis: An Emerging Bio-Tool for Numerous Applications. J. Biol. Res. 2012, 17, 97. [Google Scholar]
- Jeong, C.B.; Kang, H.M.; Lee, M.C.; Byeon, E.; Park, H.G.; Lee, J.S. Effects of Polluted Seawater on Oxidative Stress, Mortality, and Reproductive Parameters in the Marine Rotifer Brachionus koreanus and the Marine Copepod Tigriopus japonicus. Aquat. Toxicol. 2019, 208, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, C.; Liu, Z.; Wang, W.; Chen, L. Development of Predicted No Effect Concentration (PNEC) for TCS to Terrestrial Species. Chemosphere 2015, 139, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Tiepo, E.N.; Corrĉa, A.X.R.; Resgalla, C.; Cotelle, S.; Férard, J.F.; Radetski, C.M. Terrestrial Short-Term Ecotoxicity of a Green Formicide. Ecotoxicol. Environ. Saf. 2010, 73, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Kudsk, P.; Mathiassen, S.; Cedergreen, N.; Kudsk, P.; Mathiassen, S.K.; Streibig, J.C. Combination Effects of Herbicides on Plants and Algae: Do Species and Test Systems Matter? Pest Manag. Sci. Pest Manag Sci 2007, 63, 282–295. [Google Scholar] [CrossRef]
- Wu, X.; Nguyen, H.; Kim, D.; Peng, H. Chronic Toxicity of PFAS-Free AFFF Alternatives in Terrestrial Plant Brassica rapa. Sci. Total Environ. 2022, 850, 158100. [Google Scholar] [CrossRef]
- Triques, M.C.; Oliveira, D.; Goulart, B.V.; Montagner, C.C.; Espíndola, E.L.G.; de Menezes-Oliveira, V.B. Assessing Single Effects of Sugarcane Pesticides Fipronil and 2,4-D on Plants and Soil Organisms. Ecotoxicol. Environ. Saf. 2021, 208, 111622. [Google Scholar] [CrossRef]
- Mathiassen, S.K.; Boutin, C.; Strandberg, B.; Carpenter, D.; Damgaard, C. Effects of Low Doses of Herbicides on Different Endpoints in the Life Cycle of Nontarget Terrestrial Plants. Environ. Toxicol. Chem. 2021, 40, 1389–1404. [Google Scholar] [CrossRef]
- Van Loon, S.; Vicente, V.B.; van Gestel, C.A.M. Long-Term Effects of Imidacloprid, Thiacloprid, and Clothianidin on the Growth and Development of Eisenia andrei. Environ. Toxicol. Chem. 2022, 41, 1686–1695. [Google Scholar] [CrossRef]
- Kwak, J.I.; An, Y.J. Length- and Polymer-Dependent Ecotoxicities of Microfibers to the Earthworm Eisenia andrei. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 257, 109354. [Google Scholar] [CrossRef]
- Li, R.; Meng, Z.; Sun, W.; Wu, R.; Jia, M.; Yan, S.; Tian, S.; Zhu, W.; Zhou, Z. Bioaccumulation and Toxic Effects of Penconazole in Earthworms (Eisenia fetida) following Soil Exposure. Environ. Sci. Pollut. Res. Int. 2020, 27, 38056–38063. [Google Scholar] [CrossRef]
- Lescano, M.R.; Masin, C.E.; Rodríguez, A.R.; Godoy, J.L.; Zalazar, C.S. Earthworms to Improve Glyphosate Degradation in Biobeds. Environ. Sci. Pollut. Res. Int. 2020, 27, 27023–27031. [Google Scholar] [CrossRef]
- Duo, L.; Yin, L.; Zhang, C.; Zhao, S. Ecotoxicological Responses of the Earthworm Eisenia fetida to EDTA Addition under Turfgrass Growing Conditions. Chemosphere 2019, 220, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Garczyńska, M.; Paczka, G.; Kostecka, J. Influence of Neonicotinoids on Selected Characteristics of the Earthworm Dendrobaena Veneta (Rosa) in Laboratory Conditions. J. Ecol. Eng. 2019, 20, 217–224. [Google Scholar] [CrossRef]
- Gowri, S.; Thangaraj, R. Studies on the Toxic Effects of Agrochemical Pesticide (Monocrotophos) on Physiological and Reproductive Behavior of Indigenous and Exotic Earthworm Species. Int. J. Environ. Health Res. 2020, 30, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Hansel, F.A.; Maia, C.M.B.F.; Guiotoku, M.; Cunha, L.; Brown, G.G. Earthworm-Biochar Interactions: A Laboratory Trial Using Pontoscolex corethrurus. Sci. Total Environ. 2021, 777, 146147. [Google Scholar] [CrossRef]
- Moinard, V.; Redondi, C.; Etiévant, V.; Savoie, A.; Duchene, D.; Pelosi, C.; Houot, S.; Capowiez, Y. Short- and Long-Term Impacts of Anaerobic Digestate Spreading on Earthworms in Cropped Soils. Appl. Soil Ecol. 2021, 168, 104149. [Google Scholar] [CrossRef]
- Bagherifam, S.; Brown, T.C.; Fellows, C.M.; Naidu, R. Derivation Methods of Soils, Water and Sediments Toxicity Guidelines: A Brief Review with a Focus on Antimony. J. Geochem. Explor. 2019, 205, 106348. [Google Scholar] [CrossRef]
- Burton, G.A. Assessing the Toxicity of Freshwater Sediments. Environ. Toxicol. Chem. 1991, 10, 1585–1627. [Google Scholar] [CrossRef]
- OECD. Test No. 218: Sediment-Water Chironomid Toxicity Using Spiked Water, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2004; pp. 1–21. [Google Scholar] [CrossRef]
- Simpson, S.L.; Campana, O.; Ho, K.T. Sediment Toxicity Testing. In Marine Ecotoxicology; Academic Press: Cambridge, MA, USA, 2016; pp. 199–237. [Google Scholar] [CrossRef]
- Guzzella, L. Comparison of Test Procedures for Sediment Toxicity Evaluation with Vibrio fischeri Bacteria. Chemosphere 1998, 37, 2895–2909. [Google Scholar] [CrossRef]
- Simpson, S.L.; Batley, G.E. Sediment Quality Assessment: A Practical Guide; CSIRO Publishing: Clayton, VIC, Australia, 2016. [Google Scholar]
- Adams, M.S.; Stauber, J.L. Development of a Whole-Sediment Toxicity Test Using a Benthic Marine Microalga. Environ. Toxicol. Chem. 2004, 23, 1957–1968. [Google Scholar] [CrossRef]
- Greenstein, D.; Bay, S.; Anderson, B.; Chandler, G.T.; Farrar, J.D.; Keppler, C.; Phillips, B.; Ringwood, A.; Young, D. Comparison of Methods for Evaluating Acute and Chronic Toxicity in Marine Sediments. Environ. Toxicol. Chem. 2008, 27, 933–944. [Google Scholar] [CrossRef]
- Krell, B.; Moreira-Santos, M.; Ribeiro, R. An Estuarine Mudsnail in Situ Toxicity Assay Based on Postexposure Feeding. Environ. Toxicol. Chem. 2011, 30, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; Tornero, V.; Lubián, L.M.; Blasco, J.; van Bergeijk, S.A.; Cañavate, P.; Cid, Á.; Franco, D.; Prado, R.; Bartual, A.; et al. Ring Test for Whole-Sediment Toxicity Assay with -a- Benthic Marine Diatom. Sci. Total Environ. 2010, 408, 822–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurjanz, S.; Fournier, A.; Clostre, F.; Godard, E.; Feidt, C. Control of Poultry Contamination in Chlordecone-Contaminated Areas of the French West Indies. Environ. Sci. Pollut. Res. Int. 2020, 27, 41117–41121. [Google Scholar] [CrossRef] [PubMed]
- Amadi, C.N.; Frazzoli, C.; Orisakwe, O.E. Sentinel Species for Biomonitoring and Biosurveillance of Environmental Heavy Metals in Nigeria. J. Environ. Sci. Health Part C Toxicol. Carcinog. 2020, 38, 21–60. [Google Scholar] [CrossRef]
- Schmolke, A.; Galic, N.; Feken, M.; Thompson, H.; Sgolastra, F.; Pitts-Singer, T.; Elston, C.; Pamminger, T.; Hinarejos, S. Assessment of the Vulnerability to Pesticide Exposures Across Bee Species. Environ. Toxicol. Chem. 2021, 40, 2640–2651. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Wang, Y.; Portilla, M.; Parys, K.; Li, W. Risk and Toxicity Assessment of a Potential Natural Insecticide, Methyl Benzoate, in Honey Bees (Apis mellifera L.). Insects 2019, 10, 382. [Google Scholar] [CrossRef] [Green Version]
- Raimets, R.; Naudi, S.; Mänd, M.; Bartkevičs, V.; Smagghe, G.; Karise, R. Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens. Insects 2021, 13, 45. [Google Scholar] [CrossRef]
- Gradish, A.E.; van der Steen, J.; Scott-Dupree, C.D.; Cabrera, A.R.; Cutler, G.C.; Goulson, D.; Klein, O.; Lehmann, D.M.; Lückmann, J.; O’Neill, B.; et al. Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera: Apidae): Implications for Risk Assessments. Environ. Entomol. 2019, 48, 12–21. [Google Scholar] [CrossRef]
- Ansell, G.R.; Frewin, A.J.; Gradish, A.E.; Scott-Dupree, C.D. Contact Toxicity of Three Insecticides for Use in Tier I Pesticide Risk Assessments with Megachile Rotundata (Hymenoptera: Megachilidae). PeerJ 2021, 9, e10744. [Google Scholar] [CrossRef]
- Yalçin, M.; Kapiz, I.; Kösoglu, M.; Koca, Y.O.; Turgut, N.; Topal, E.; Kurt Karakus, P.B.; Atatanir, L.; Mermer, S.; Özkaleli Akçetin, M.; et al. Translocation of Clothianidin to Guttation Fluid and Its Potential Impact on Honey Bee, Apis mellifera anatoliaca Maa, 1953 (Hymenoptera: Apidae). Türkiye Entomoloji Derg. 2021, 45, 511–522. [Google Scholar] [CrossRef]
- Weitekamp, C.A.; Koethe, R.W.; Lehmann, D.M. A Comparison of Pollen and Syrup Exposure Routes in Bombus Impatiens (Hymenoptera: Apidae) Microcolonies: Implications for Pesticide Risk Assessment. Environ. Entomol. 2022, 51, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.E.; Cecchetti, G. Biological Monitoring: Lichens as Bioindicators of Air Pollution Assessment—A Review. Environ. Pollut. 2001, 114, 471–492. [Google Scholar] [CrossRef]
- Boonpeng, C.; Sriviboon, C.; Polyiam, W.; Sangiamdee, D.; Watthana, S.; Boonpragob, K. Assessing Atmospheric Pollution in a Petrochemical Industrial District Using a Lichen-Air Quality Index (LiAQI). Ecol. Indic. 2018, 95, 589–594. [Google Scholar] [CrossRef]
- Palharini, K.M.Z.; Vitorino, L.C.; Bessa, L.A.; de Carvalho Vasconcelos Filho, S.; Silva, F.G. Parmotrema Tinctorum as an Indicator of Edge Effect and Air Quality in Forested Areas Bordered by Intensive Agriculture. Environ. Sci. Pollut. Res. 2021, 28, 68997–69011. [Google Scholar] [CrossRef]
- Daimari, R.; Bhuyan, P.; Hussain, S.; Nayaka, S.; Mazumder, M.A.J.; Hoque, R.R. Anatomical, Physiological, and Chemical Alterations in Lichen (Parmotrema tinctorum (Nyl.) Hale) Transplants Due to Air Pollution in Two Cities of Brahmaputra Valley, India. Environ. Monit. Assess. 2021, 193, 1–12. [Google Scholar] [CrossRef]
- De Viana, C.O.; Vaz, R.P.; Cano, A.; Santos, A.P.; Cançado, L.G.; Ladeira, L.O.; Junior, A.C. Physiological Changes of the Lichen Parmotrema tinctorum as Result of Carbon Nanotubes Exposition. Ecotoxicol. Environ. Saf. 2015, 120, 110–116. [Google Scholar] [CrossRef]
- Kouadria, N.; Alioua Berrebbah, A.; Belhoucine, F.; Bouredja, N.; Aitkaci, M. Cellular Impact of Metal Trace Elements on the Lichen Lobaria pulmonaria (L.) Hoffm. (1796), a Bio Indicator of Atmospheric Pollution and Identification of Its Antioxidant Response. Appl. Ecol. Environ. Res. 2021, 19, 4721–4738. [Google Scholar] [CrossRef]
- Palharini, K.M.Z.; Vitorino, L.C.; de Oliveira Menino, G.C.; Bessa, L.A. Edge Effects Reflect the Impact of the Agricultural Matrix on the Corticolous Lichens Found in Fragments of Cerrado Savanna in Central Brazil. Sustainability 2020, 12, 7149. [Google Scholar] [CrossRef]
- Safitri, R.R.; Sudirman, L.I.; Koesmaryono, Y. Exploration of Parmotrema Tinctorum and Leptogium Sp. Lichens as Bioindicator of Air Quality in Mekarsari Fruit Park. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IPB International Convention Centre: Bogor, Indonesia, 2020; Volume 457. [Google Scholar] [CrossRef]
- Chang-Ming, Y.; Xing-Jun, W.; He-Hui, Z. Biodegradation of Acetanilide Herbicides Acetochlor and Butachlor in Soil. J. Environ. Sci. 2002, 14, 524–529. [Google Scholar]
- Hirano, T.; Ishida, T.; Oh, K.; Sudo, R. Biodegradation of Chlordane and Hexachlorobenzenes in River Sediment. Chemosphere 2007, 67, 428–434. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Mei, C.F.; Sun, G.P.; Li, H.B.; Liu, L.; Xu, M.Y. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test. Arch. Environ. Contam. Toxicol. 2016, 71, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.; Yang, D.; Zheng, Y.; Yang, Y.; He, Y.; Luo, L.; Zhou, Y. Current Progress in the Adsorption, Transport and Biodegradation of Antibiotics in Soil. J. Environ. Manag. 2019, 251, 109598. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.P.; Duan, J.L.; Yuan, X.Z.; Shi, X.S.; Han, Z.L.; Wang, S.G. Hydrolysis, Adsorption, and Biodegradation of Bensulfuron Methyl under Methanogenic Conditions. Chemosphere 2018, 199, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Reiss, R.; Lewis, G.; Griffin, J. An Ecological Risk Assessment for Triclosan in the Terrestrial Environment. Environ. Toxicol. Chem. 2009, 28, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.M.; Rizvi, S.A. Accumulation of Chromium and Copper in Three Different Soils and Bioaccumulation in an Aquatic Plant, Alternanthera philoxeroides. Bull. Environ. Contam. Toxicol. 2000, 65, 55–61. [Google Scholar] [CrossRef]
- Deblonde, T.; Hartemann, P. Environmental Impact of Medical Prescriptions: Assessing the Risks and Hazards of Persistence, Bioaccumulation and Toxicity of Pharmaceuticals. Public Health 2013, 127, 312–317. [Google Scholar] [CrossRef]
- Liu, T.; Wang, P.; Lu, Y.; Zhou, G.; Diao, J.; Zhou, Z. Enantioselective Bioaccumulation of Soil-Associated Fipronil Enantiomers in Tubifex Tubifex. J. Hazard. Mater. 2012, 219–220, 50–56. [Google Scholar] [CrossRef]
- Pi, N.; Ng, J.Z.; Kelly, B.C. Bioaccumulation of Pharmaceutically Active Compounds and Endocrine Disrupting Chemicals in Aquatic Macrophytes: Results of Hydroponic Experiments with Echinodorus horemanii and Eichhornia crassipes. Sci. Total Environ. 2017, 601–602, 812–820. [Google Scholar] [CrossRef]
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef]
- Białk-Bielińska, A.; Maszkowska, J.; Mrozik, W.; Bielawska, A.; Kołodziejska, M.; Palavinskas, R.; Stepnowski, P.; Kumirska, J. Sulfadimethoxine and Sulfaguanidine: Their Sorption Potential on Natural Soils. Chemosphere 2012, 86, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Hasany, S.M.; Chaudhary, M.H. Sorption Potential of Haro River Sand for the Removal of Antimony from Acidic Aqueous Solution. Appl. Radiat. Isot. 1996, 47, 467–471. [Google Scholar] [CrossRef]
- Evans, S.J.; Clift, M.J.D.; Singh, N.; Wills, J.W.; Hondow, N.; Wilkinson, T.S.; Burgum, M.J.; Brown, A.P.; Jenkins, G.J.; Doak, S.H. In Vitro Detection of in Vitro Secondary Mechanisms of Genotoxicity Induced by Engineered Nanomaterials. Part. Fibre Toxicol. 2019, 16, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judson, R.S.; Houck, K.A.; Kavlock, R.J.; Knudsen, T.B.; Martin, M.T.; Mortensen, H.M.; Reif, D.M.; Rotroff, D.M.; Shah, I.; Richard, A.M.; et al. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project. Environ. Health Perspect. 2010, 118, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
- Chung, S.; Kim, S.H.; Seo, Y.; Kim, S.K.; Lee, J.Y. Quantitative Analysis of Cell Proliferation by a Dye Dilution Assay: Application to Cell Lines and Cocultures. Cytometry. A 2017, 91, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, 469–471. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. In Cell Viability Assays; Humana Press: New York, NY, USA, 2017; Volume 1601, pp. 1–17. [Google Scholar] [CrossRef]
- Pereira, M.I.A.; Monteiro, C.A.P.; de Oliveira, W.F.; Santos, B.S.; Fontes, A.; Cabral Filho, P.E. Resazurin-Based Assay to Evaluate Cell Viability after Quantum Dot Interaction. Methods Mol. Biol. 2020, 2135, 213–221. [Google Scholar] [CrossRef]
- Luzak, B.; Siarkiewicz, P.; Boncler, M. An Evaluation of a New High-Sensitivity PrestoBlue Assay for Measuring Cell Viability and Drug Cytotoxicity Using EA.Hy926 Endothelial Cells. Toxicol. Vitr. 2022, 83, 105407. [Google Scholar] [CrossRef]
- Lomba, L.; Ribate, M.P.; Zaragoza, E.; Concha, J.; Garralaga, M.P.; Errazquin, D.; García, C.B.; Giner, B. Deep Eutectic Solvents: Are They Safe? Appl. Sci. 2021, 11, 10061. [Google Scholar] [CrossRef]
- Kolle, S.N.; Sullivan, K.M.; Mehling, A.; van Ravenzwaay, B.; Landsiedel, R. Applicability of in Vitro Tests for Skin Irritation and Corrosion to Regulatory Classification Schemes: Substantiating Test Strategies with Data from Routine Studies. Regul. Toxicol. Pharmacol. 2012, 64, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Kolle, S.N.; van Ravenzwaay, B.; Landsiedel, R. Regulatory Accepted but out of Domain: In Vitro Skin Irritation Tests for Agrochemical Formulations. Regul. Toxicol. Pharmacol. 2017, 89, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, R.N.; Betts, C.J.; Whritenour, J.; Sura, R.; Thamsen, M.; Kaufman, E.H.; Fabre, K. Drug-Induced Skin Toxicity: Gaps in Preclinical Testing Cascade as Opportunities for Complex In Vitro Models and Assays. Lab Chip 2020, 20, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Kolle, S.N.; Landsiedel, R. Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh. Handb. Exp. Pharmacol. 2021, 265, 3–27. [Google Scholar] [CrossRef]
- Inami, K.; Okazawa, M.; Mochizuki, M. Mutagenicity of Aromatic Amines and Amides with Chemical Models for Cytochrome P450 in Ames Assay. Toxicol. Vitr. 2009, 23, 986–991. [Google Scholar] [CrossRef]
- Chen, S.C.; Chung, K.T. Mutagenicity and Antimutagenicity Studies of Tannic Acid and Its Related Compounds. Food Chem. Toxicol. 2000, 38, 1–5. [Google Scholar] [CrossRef]
- Gooderham, N.J.; Cohen, S.M.; Eisenbrand, G.; Fukushima, S.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Bastaki, M.; Linman, M.J.; et al. The Safety Evaluation of Food Flavoring Substances: The Role of Genotoxicity Studies. Crit. Rev. Toxicol. 2020, 50, 1–27. [Google Scholar] [CrossRef]
- Horibe, A.; Odashima, S.; Hamasuna, N.; Morita, T.; Hayashi, M. Weight of Contribution of in Vitro Chromosomal Aberration Assay for Evaluation of Pesticides: Experience of Risk Assessment at the Food Safety Commission of Japan. Regul. Toxicol. Pharmacol. 2018, 95, 133–141. [Google Scholar] [CrossRef]
- Clippinger, A.J.; Raabe, H.A.; Allen, D.G.; Choksi, N.Y.; van der Zalm, A.J.; Kleinstreuer, N.C.; Barroso, J.; Lowit, A.B. Human-Relevant Approaches to Assess Eye Corrosion/Irritation Potential of Agrochemical Formulations. Cutan. Ocul. Toxicol. 2021, 40, 145–167. [Google Scholar] [CrossRef]
- OECD. Test No. 405: Acute Eye Irritation/Corrosion; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- Hunt, P.R. The C. Elegans Model in Toxicity Testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef]
- Boyd, W.A.; McBride, S.J.; Rice, J.R.; Snyder, D.W.; Freedman, J.H. A High-Throughput Method for Assessing Chemical Toxicity Using a Caenorhabditis elegans Reproduction Assay. Toxicol. Appl. Pharmacol. 2010, 245, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, W.A.; Smith, M.V.; Co, C.A.; Pirone, J.R.; Rice, J.R.; Shockley, K.R.; Freedman, J.H. Developmental Effects of the ToxCastTM Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits. Environ. Health Perspect. 2016, 124, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harlow, P.H.; Perry, S.J.; Widdison, S.; Daniels, S.; Bondo, E.; Lamberth, C.; Currie, R.A.; Flemming, A.J. The Nematode Caenorhabditis Elegans as a Tool to Predict Chemical Activity on Mammalian Development and Identify Mechanisms Influencing Toxicological Outcome. Sci. Rep. 2016, 6, 22965. [Google Scholar] [CrossRef] [Green Version]
- Hunt, P.R.; Olejnik, N.; Bailey, K.D.; Vaught, C.A.; Sprando, R.L.C. Elegans Development and Activity Test Detects Mammalian Developmental Neurotoxins. Food Chem. Toxicol. 2018, 121, 583–592. [Google Scholar] [CrossRef]
- Hunt, P.R.; Olejnik, N.; Sprando, R.L. Toxicity Ranking of Heavy Metals with Screening Method Using Adult Caenorhabditis elegans and Propidium Iodide Replicates Toxicity Ranking in Rat. Food Chem. Toxicol. 2012, 50, 3280–3290. [Google Scholar] [CrossRef]
- Haag, E.S.; Fitch, D.H.A.; Delattre, M. From “the Worm” to “the Worms” and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018, 210, 397–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honnen, S. Caenorhabditis Elegans as a Powerful Alternative Model Organism to Promote Research in Genetic Toxicology and Biomedicine. Arch. Toxicol. 2017, 91, 2029–2044. [Google Scholar] [CrossRef]
- Leung, M.C.K.; Williams, P.L.; Benedetto, A.; Au, C.; Helmcke, K.J.; Aschner, M.; Meyer, J.N. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci. 2008, 106, 5–28. [Google Scholar] [CrossRef]
- OECD. Test No. 423: Acute Oral Toxicity—Acute Toxic Class Method; OECD: Paris, France, 2002; pp. 1–14. [Google Scholar] [CrossRef]
- Ortiz-Andrade, R.; Araujo-León, J.A.; Sánchez-Recillas, A.; Navarrete-Vazquez, G.; González-Sánchez, A.A.; Hidalgo-Figueroa, S.; Alonso-Castro, Á.J.; Aranda-González, I.; Hernández-Núñez, E.; Coral-Martínez, T.I.; et al. Toxicological Screening of Four Bioactive Citroflavonoids: In Vitro, In Vivo, and In Silico Approaches. Molecules 2020, 25, 5959. [Google Scholar] [CrossRef]
- Lopes Andrade, A.W.; Dias Ribeiro Figueiredo, D.; TorequlIslam, M.; Viana Nunes, A.M.; da Conceição Machado, K.; Uddin, S.J.; Ahmed Shilpi, J.; Rouf, R.; de Carvalho Melo-Cavalcante, A.A.; David, J.M.; et al. Toxicological Evaluation of the Biflavonoid, Agathisflavone in Albino Swiss Mice. Biomed. Pharmacother. 2019, 110, 68–73. [Google Scholar] [CrossRef]
- Li, P.; Wu, H.; Wang, Y.; Peng, W.; Su, W. Toxicological Evaluation of Naringin: Acute, Subchronic, and Chronic Toxicity in Beagle Dogs. Regul. Toxicol. Pharmacol. 2020, 111, 104580. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Alarcón, N.; Osorio-Méndez, J.J.; Ayala-Fajardo, A.; Garzón-Méndez, W.F.; Garavito-Aguilar, Z.V. Zebrafish and Artemia salina In Vivo Evaluation of the Recreational 25C-NBOMe Drug Demonstrates Its High Toxicity. Toxicol. Reports 2021, 8, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Fang, M.; Liu, J.; Fu, C.; Zheng, C.; Chen, B.; Wang, K.J. In Vivo Actions of Bisphenol F on the Reproductive Neuroendocrine System after Long-Term Exposure in Zebrafish. Sci. Total Environ. 2019, 665, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Lovera, C.; Martínez-Val, J.; Cabezas-Sainz, P.; López, R.; Rubiolo, J.A.; Sánchez, L. In Vivo Toxicity Assays in Zebrafish Embryos: A Pre-Requisite for Xenograft Preclinical Studies. Toxicol. Mech. Methods 2019, 29, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.; Ponce-Canchihuamán, J. Emerging Various Environmental Threats to Brain and Overview of Surveillance System with Zebrafish Model. Toxicol. Rep. 2017, 4, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Murakami, S.; Ashikawa, Y.; Sasagawa, S.; Umemoto, N.; Shimada, Y.; Tanaka, T. Zebrafish as a Systems Toxicology Model for Developmental Neurotoxicity Testing. Congenit. Anom. 2015, 55, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Migliore, L.; Civitareale, C.; Brambilla, G.; Dojmi Di Delupis, G. Toxicity of Several Important Agricultural Antibiotics to Artemia. Water Res. 1997, 31, 1801–1806. [Google Scholar] [CrossRef]
- Elofsson, R.; Klemm, N. Monoamine-Containing Neurons in the Optic Ganglia of Crustaceans and Insects. Z. Zellforsch. Mikrosk. Anat. 1972, 133, 475–499. [Google Scholar] [CrossRef]
- Rehn, B.; Seiler, F.; Rehn, S.; Bruch, J.; Maier, M. Investigations on the Inflammatory and Genotoxic Lung Effects of Two Types of Titanium Dioxide: Untreated and Surface Treated. Toxicol. Appl. Pharmacol. 2003, 189, 84–95. [Google Scholar] [CrossRef]
- Warheit, D.B.; Reed, K.L.; Webb, T.R. Pulmonary Toxicity Studies in Rats with Triethoxyoctylsilane (OTES)-Coated, Pigment-Grade Titanium Dioxide Particles: Bridging Studies to Predict Inhalation Hazard. Exp. Lung Res. 2003, 29, 593–606. [Google Scholar] [CrossRef]
- van Ravenzwaay, B.; Landsiedel, R.; Fabian, E.; Burkhardt, S.; Strauss, V.; Ma-Hock, L. Comparing Fate and Effects of Three Particles of Different Surface Properties: Nano-TiO2, Pigmentary TiO2 and Quartz. Toxicol. Lett. 2009, 186, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Pott, F.; Roller, M. Carcinogenicity Study with Nineteen Granular Dusts in Rats. Eur. J. Oncol. 2005, 10, 249–281. [Google Scholar]
- Ma-Hock, L.; Burkhardt, S.; Strauss, V.; Gamer, A.O.; Wiench, K.; Van Ravenzwaay, B.; Landsiedel, R. Development of a Short-Term Inhalation Test in the Rat Using Nano-Titanium Dioxide as a Model Substance. Inhal. Toxicol. 2009, 21, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Trochimowicz, H.J.; Reinhardt, C.F. Pulmonary Response of Rats Exposed to Titanium Dioxide (TiO2) by Inhalation for Two Years. Toxicol. Appl. Pharmacol. 1985, 79, 179–192. [Google Scholar] [CrossRef]
- Bermudez, E.; Mangum, J.B.; Wong, B.A.; Asgharian, B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicol. Sci. 2004, 77, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Movia, D.; Bruni-Favier, S.; Prina-Mello, A. In Vitro Alternatives to Acute Inhalation Toxicity Studies in Animal Models—A Perspective. Front. Bioeng. Biotechnol. 2020, 8, 549. [Google Scholar] [CrossRef]
- Heinrich, U.; Fuhst, R.; Rittinghausen, S.; Creutzenberg, O.; Bellmann, B.; Koch, W.; Levsen, K. Chronic Inhalation Exposure of Wistar Rats and Two Different Strains of Mice to Diesel Engine Exhaust, Carbon Black, and Titanium Dioxide. Inhal. Toxicol. 1995, 7, 533–556. [Google Scholar] [CrossRef]
- Heddle, J.A.; Hite, M.; Kirkhart, B.; Mavournin, K.; MacGregor, J.T.; Newell, G.W.; Salamone, M.F. The Induction of Micronuclei as a Measure of Genotoxicity. A Report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res. 1983, 123, 61–118. [Google Scholar] [CrossRef]
- Nallani, G.C.; Liu, Z.; Chandrasekaran, A. Toxicokinetic Testing Strategies to Demonstrate Bone Marrow Exposure in In Vivo Micronucleus Study for Genotoxicity Assessment of Agrochemicals. Regul. Toxicol. Pharmacol. 2020, 110. [Google Scholar] [CrossRef]
Tons/Year | Physicochemical Properties | Ecotoxicological Information | Toxicological Information |
---|---|---|---|
>1000 |
|
| |
100–1000 |
|
|
|
10–100 |
|
| |
1–10 |
|
|
|
Short-Term or Acute Biomodels (53%) | Long-Term or Chronic Biomodels (47%) | ||||
---|---|---|---|---|---|
Aquatic Quality (80%) | Terrestrial Quality (14%) | Air Quality (6%) | Aquatic Quality (87%) | Terrestrial Quality (10%) | Air Quality (3%) |
Amphibians (3%) Algae (10%) Rotifers (1%) Bacteria (7%) Microorganisms (13%) Plants (19%) Mollusks (3%) Crustaceans (18%) Fish (24%) | Sediments (10%) Microorganism (30%) Mites (3%) Earthworms or worms (20%) Fungi (2%) Plants (45%) | Bees (13%) Ferns (3%) Lichens (1%) Salamanders (4%) Birds or eggs (79%) | Amphibians (2%) Planktons (2%) Protozoos (2%) Algae (9%) Rotifers (1%) Bacteria (8%) Microorganisms (14%) Plants (25%) Mollusks (4%) Crustaceans (11%) Fish (24%) | Microorganisms (20%) Mites (2%) Earthworms/worms (14%) Plants (50%) Sediments (9%) | Birds or eggs (81%) Bees (13%) Ferns (2%) Lichens (2%) Salamanders (2%) |
In Vitro (38%) | In Vivo (62%) |
---|---|
Carcinogenicity (11%) Toxicokinetics (4%) Irritation (5%) Reproductive tests (18%) Oral toxicity (32%) Inhalatory assays (7%) Mutagenicity or genotoxicity (23%) | Skin sensibilization (1%) Irritation (4%) Cytotoxicity (69%) Mutagenicity or genotoxicity (21%) Acute toxicity in vitro (5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garralaga, M.P.; Lomba, L.; Zuriaga, E.; Santander, S.; Giner, B. Key Properties for the Toxicity Classification of Chemicals: A Comparison of the REACH Regulation and Scientific Studies Trends. Appl. Sci. 2022, 12, 11710. https://doi.org/10.3390/app122211710
Garralaga MP, Lomba L, Zuriaga E, Santander S, Giner B. Key Properties for the Toxicity Classification of Chemicals: A Comparison of the REACH Regulation and Scientific Studies Trends. Applied Sciences. 2022; 12(22):11710. https://doi.org/10.3390/app122211710
Chicago/Turabian StyleGarralaga, Mª Pilar, Laura Lomba, Estefanía Zuriaga, Sonia Santander, and Beatriz Giner. 2022. "Key Properties for the Toxicity Classification of Chemicals: A Comparison of the REACH Regulation and Scientific Studies Trends" Applied Sciences 12, no. 22: 11710. https://doi.org/10.3390/app122211710
APA StyleGarralaga, M. P., Lomba, L., Zuriaga, E., Santander, S., & Giner, B. (2022). Key Properties for the Toxicity Classification of Chemicals: A Comparison of the REACH Regulation and Scientific Studies Trends. Applied Sciences, 12(22), 11710. https://doi.org/10.3390/app122211710