Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Product Preparation
2.2. pH and Water Activity (aw) of Products
2.3. Color Parameter
2.4. Oxidation Status
2.4.1. Thiobarbituric Acid Reactive Substances (TBARS) Level
2.4.2. Oxidation–Reduction Potential (ORP)
2.4.3. Oxygenation Index (Oxi)
2.4.4. Surface Hydrophobicity
2.4.5. Free Sulfhydryl Group (SH) Contents
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leroy, F.; Geyzen, A.; Janssens, M.; De Vuyst, L.; Scholliers, P. Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends Food Sci. Technol. 2013, 31, 130–137. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Mozuriene, E.; Lele, V.; Zadeike, D.; Juodeikiene, G. The safety, technological, nutritional, and sensory challenges associated with lacto-fermentation of meat and meat products by using pure lactic acid bacteria strains and plant-lactic acid bacteria bioproducts. Front. Microbiol. 2019, 10, 1036. [Google Scholar] [CrossRef]
- Leroy, F.; Verluyten, J.; De Vuyst, L. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 2006, 106, 270–285. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J.; Zielińska, D.; Kołożyn-Krajewska, D. Potential of bacteriocins from lab to improve microbial quality of dry-cured and fermented meat products. Acta Sci. Pol. Technol. Aliment. 2017, 16, 119–126. [Google Scholar]
- Hwang, I.H.; Thompson, J.M. The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle. Meat Sci. 2001, 58, 167–174. [Google Scholar] [CrossRef]
- Pomponio, L.; Ertbjerg, P.; Karlsson, A.H.; Costa, L.N.; Lametsch, R. Influence of early pH decline on calpain activity in porcine muscle. Meat Sci. 2010, 85, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef] [PubMed]
- Skwarek, M.; Dolatowski, Z.J. Wpływ bakterii probiotycznych na właściwości reologiczne szynek surowo dojrzewających. Żywność Nauka Technol. Jakość 2013, 3, 73–82. (In Polish) [Google Scholar]
- Bao, Y.; Ertbjerg, P. Effects of protein oxidation on the texture and water-holding of meat: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3564–3578. [Google Scholar] [CrossRef] [Green Version]
- Talon, R.; Leroy, S. Meat: Reduction of Nitrate and Nitrite Salts in Meat Products–What Are the Consequences and Possible Solutions? In Handbook of Molecular Gastronomy; CRC Press: Boca Raton, FL, USA, 2021; pp. 423–428. [Google Scholar]
- Palavecino Prpich, N.Z.; Castro, M.P.; Cayré, M.E.; Garro, O.A.; Vignolo, G.M. Indigenous starter cultures to improve quality of artisanal dry fermented sausages from Chaco (Argentina). Int. J. Food Sci. 2015, 2015, 931970. [Google Scholar] [CrossRef] [Green Version]
- Aquilanti, L.; Santarelli, S.; Silvestri, G.; Osimani, A.; Petruzzelli, A.; Clementi, F. The microbial ecology of a typical Italian salami during its natural fermentation. Int. J. Food Microbiol. 2007, 120, 136–145. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chem. 2016, 201, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xia, Y.; Wang, G.; Yang, Y.; Xiong, Z.; Lv, F.; Zhou, W.; Ai, L. Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front. Microbiol. 2018, 9, 2684. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr.; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Sante-Lhoutellier, V.; Aubry, L.; Gatellier, P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem. 2007, 55, 5343–5348. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.; Hu, Y.; Zhang, L.; Wang, Y.; Chen, Q.; Kong, B. Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage. Meat Sci. 2019, 156, 33–43. [Google Scholar] [CrossRef]
- Stadtman, E.R. Protein oxidation in aging and age-related diseases. Ann. N. Y. Acad. Sci. 2001, 928, 22–38. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Dolatowski, Z.J.; Kołożyn-Krajewska, D.; Trząskowska, M. The Effect of the L actobacillus Casei Lock 0900 Probiotic Strain on the Quality of Dry-Fermented Sausage During Chilling Storage. J. Food Qual. 2012, 35, 353–365. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Ahn, D.U.; Nam, K.C. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef. Radiat. Phys. Chem. 2004, 71, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Renerre, M. Biochemical basis of fresh meat colour. In Proceedings of the 45th ICoMST, Yokohama, Japan, 1–6 August 1999; Volume 2, pp. 344–353. [Google Scholar]
- Lieske, B.; Konrad, G. A new approach to estimate surface hydrophobicity of proteins. Milchwissenschaft 1994, 49, 663–666. [Google Scholar]
- Tian, L.; Hu, S.; Jia, J.; Tan, W.; Yang, L.; Zhang, Q.; Liu, X.; Duan, X. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chem. 2021, 341, 128163. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, K.; Zhou, H.; Peng, W. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chem. 2012, 132, 808–814. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yen, C.L. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef]
- Shuwen, Z.; Lu, L.; Yanling, S.; Hongjuan, L.; Qi, S.; Xiao, L.; Jiaping, L. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbiol. Res. 2011, 5, 5194–5201. [Google Scholar]
- Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.H. Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria. Fermentation 2022, 8, 29. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y. Engineering the antioxidative properties of lactic acid bacteria for improving its robustness. Curr. Opin. Biotechnol. 2013, 24, 142–147. [Google Scholar] [CrossRef]
- An, H.; Zhou, H.; Huang, Y.; Wang, G.; Luan, C.; Mou, J.; Luo, Y.; Hao, Y. High-level expression of heme-dependent catalase gene katA from Lactobacillus sakei protects Lactobacillus rhamnosus from oxidative stress. Mol. Biotechnol. 2010, 45, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Kong, B.; Sun, Q.; Dong, F.; Liu, Q. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: In vitro and in a sausage model. Meat Sci. 2015, 110, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Libera, J.; Karwowska, M.; Stasiak, D.M.; Dolatowski, Z.J. Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB-12. Int. J. Food Sci. Technol. 2015, 50, 1560–1566. [Google Scholar] [CrossRef]
- Stadnik, J.; Stasiak, D.M.; Dolatowski, Z.J. Proteolysis in dry-aged loins manufactured with sonicated pork and inoculated with Lactobacillus casei ŁOCK 0900 probiotic strain. Int. J. Food Sci. Technol. 2014, 49, 2578–2584. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J. Characteristic of antioxidant activity of dry-cured pork loins inoculated with probiotic strains of LAB. CyTA-J. Food 2017, 15, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Wójciak, K.M.; Libera, J.; Stasiak, D.M.; Kołożyn-Krajewska, D. Technological aspect of Lactobacillus acidophilus Bauer, Bifidobacterium animalis BB-12 and Lactobacillus rhamnosus LOCK900 use in dry-fermented pork neck and sausage. J. Food Process. Preserv. 2017, 41, e12965. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A.E. Meat spoilage mechanisms andpreservation techniques: A critical review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar]
- Tarladgis, B.G. Interpretation of the spectra of meat pigments. II.—Cured meats. The mechanism of colour fading. J. Sci. Food Agric. 1962, 13, 485–491. [Google Scholar] [CrossRef]
- Ganhão, R.; Morcuende, D.; Estévez, M. Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Sci. 2010, 85, 402–409. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Emara, A.M.; Gan, X.; Li, H. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chem. 2019, 288, 405–412. [Google Scholar] [CrossRef]
- Karwowska, M.; Stadnik, J.; Wójciak, K. The effect of different levels of sodium nitrate on the physicochemical parameters and nutritional value of traditionally produced fermented loins. Appl. Sci. 2021, 11, 2983. [Google Scholar] [CrossRef]
- Bao, Z.J.; Zhao, Y.; Wang, X.Y.; Chi, Y.J. Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. J. Food Sci. Technol. 2017, 54, 669–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kęska, P.; Stadnik, J.; Wójciak, K.M.; Neffe-Skocińska, K. Physico-chemical and proteolytic changes during cold storage of dry-cured pork loins with probiotic strains of LAB. Int. J. Food Sci. Technol. 2020, 55, 1069–1079. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J. Peptidomic Characteristic of Peptides Generated in Dry-Cured Loins with Probiotic Strains of LAB during 360-Days Aging. Appl. Sci. 2022, 12, 6036. [Google Scholar] [CrossRef]
- Cheng, J.R.; Xiang, R.; Tang, D.B.; Zhu, M.J.; Liu, X.M. Regulation of protein oxidation in Cantonese sausages by rutin, quercetin and caffeic acid. Meat Sci. 2021, 175, 108422. [Google Scholar] [CrossRef] [PubMed]
- Soszyński, M.; Bartosz, G. Decrease in accessible thiols as an index of oxidative damage to membrane proteins. Free. Radic. Biol. Med. 1997, 23, 463–469. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Xu, M.; Yao, Y.; Nie, X.; Du, H.; Tu, Y. Changes in aggregation behavior of raw and cooked salted egg yolks during pickling. Food Hydrocol. 2018, 80, 68–77. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef]
Parameter | Time [Month] | Variants | |||
---|---|---|---|---|---|
C | LOCK | BB | BAUER | ||
pH | 6 | 5.658 ± 0.003 Ab | 5.607 ± 0.008 Bc | 5.657 ± 0.002 Ab | 5.681 ± 0.018 Aa |
9 | 5.961 ± 0.015 Aa | 5.916 ± 0.016 Ab | 5.754 ± 0.004 Ba | 5.706 ± 0.037 Ba | |
12 | 5.923 ± 0.058 Aa | 5.968 ± 0.020 Aa | 5.743 ± 0.013 Ba | 5.643 ± 0.015 Ca | |
aw | 6 | 0.805 ± 0.004 Bb | 0.815 ± 0.003 Bb | 0.841 ± 0.003 Aa | 0.809 ± 0.003 Bb |
9 | 0.814 ± 0.003 Ba | 0.834 ± 0.001 Aa | 0.834 ± 0.001 Ab | 0.819 ± 0.001 Ca | |
12 | 0.815 ± 0.002 Ba | 0.831 ± 0.001 Aa | 0.832 ± 0.001 Ab | 0.810 ± 0.001 Cb |
Color Parameter | Time [Month] | Variants | |||
---|---|---|---|---|---|
C | LOCK | BB | BAUER | ||
L* | 6 | 43.15 ± 1.19 Ba | 46.92 ± 1.16 Aa | 45.62 ± 1.81 ABa | 47.71 ± 3.40 Aa |
9 | 38.75 ± 3.59 Bb | 45.35 ± 4.21 Aa | 44.56 ± 3.40 Aa | 48.19 ± 2.73 Aa | |
12 | 43.82 ± 2.47 ABa | 46.10 ± 1.94 Aa | 46.32 ± 1.57 Aa | 42.45 ± 1.06 Bb | |
a* | 6 | 7.29 ± 0.27 Cb | 6.60 ± 0.76 Ca | 10.17 ± 0.92 Aa | 8.73 ± 0.98 Ba |
9 | 9.27 ± 1.36 ABa | 8.26 ± 1.60 Ba | 10.70 ± 1.07 Aa | 8.68 ± 0.48 Ba | |
12 | 8.07 ± 1.02 Aab | 7.09 ± 0.81 ABa | 4.68 ± 0.69 Cb | 6.76 ± 0.37 Bb | |
b* | 6 | 6.96 ± 0.45 Bb | 5.28 ± 0.68 Cb | 8.95 ± 1.32 Aa | 9.43 ± 1.10 Aa |
9 | 9.10 ± 1.46 Aa | 8.77 ± 1.68 Aa | 9.45 ± 1.31 Aa | 9.68 ± 0.81 Aa | |
12 | 8.43 ± 1.94 Aab | 9.17 ± 1.11 Aa | 10.69 ± 1.63 Aa | 10.16 ± 0.99 Aa | |
Oxi | 6 | 1.635 ± 0.02 Bb | 1.743 ± 0.10 Bab | 2.059 ± 0.13 Aa | 1.253 ± 0.043 Cb |
9 | 1.919 ± 0.20 BCa | 1.943 ± 0.29 Bb | 2.141 ± 0.20 Aa | 1.608 ± 0.05 Ca | |
12 | 1.724 ± 0.10 Aa | 1.611 ± 0.07 Ba | 1.253 ± 0.04 Cb | 1.608 ± 0.05 Ba |
Parameter | Time [Month] | Variants | |||
---|---|---|---|---|---|
C | LOCK | BB | BAUER | ||
TBARS [mg MDA kg−1] | 6 | 2.446 ± 0.17 Ba | 2.990 ± 0.18 Aa | 2.476 ± 0.12 Ba | 2.915 ± 0.10 Aa |
9 | 1.471 ± 0.31 Ab | 1.811 ± 0.24 Ab | 1.382 ± 0.32 Ab | 1.385 ± 0.26 Ab | |
12 | 1.191 ± 0.06 Ac | 1.166 ± 0.20 Ac | 1.193 ± 0.18 Ac | 1.155 ± 0.08 Ac | |
ORP [mV] | 6 | 400.85 ± 4.03 Aa | 389.90 ± 4.24 Aa | 366.85 ± 2.47 Ba | 404.85 ± 0.78 Aa |
9 | 330.35 ± 2.19 Bb | 307.55 ± 2.19 Cb | 325.35 ± 2.19 Bb | 347.50 ± 5.94 Ab | |
12 | 324.15 ± 3.18 Bb | 303.05 ± 0.49 Cb | 323.50 ± 7.78 ABb | 338.50 ± 3.54 Ac |
TBARS | ORP | Oxi | HS | SH | ||
---|---|---|---|---|---|---|
C | TBARS | |||||
ORP | 0.690 | |||||
Oxi | −0.787 | |||||
HS | −0.787 | |||||
TG | 0.690 | |||||
TBARS | ORP | Oxi | HS | SH | ||
LOCK | TBARS | 0.823 | ||||
ORP | ||||||
Oxi | −0.920 | |||||
HS | 0.823 | −0.920 | ||||
SH | ||||||
TBARS | ORP | Oxi | HS | SH | ||
BB12 | TBARS | |||||
ORP | −0.777 | |||||
Oxi | ||||||
HS | ||||||
SH | −0.777 | |||||
TBARS | ORP | Oxi | HS | SH | ||
BAUER | TBARS | −0.823 | ||||
ORP | ||||||
Oxi | −0.823 | 0.739 | 0.739 | |||
HS | 0.739 | 1.000 | ||||
SH | 0.739 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stadnik, J.; Kęska, P.; Gazda, P.; Siłka, Ł.; Kołożyn-Krajewska, D. Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat. Appl. Sci. 2022, 12, 11736. https://doi.org/10.3390/app122211736
Stadnik J, Kęska P, Gazda P, Siłka Ł, Kołożyn-Krajewska D. Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat. Applied Sciences. 2022; 12(22):11736. https://doi.org/10.3390/app122211736
Chicago/Turabian StyleStadnik, Joanna, Paulina Kęska, Patrycja Gazda, Łukasz Siłka, and Danuta Kołożyn-Krajewska. 2022. "Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat" Applied Sciences 12, no. 22: 11736. https://doi.org/10.3390/app122211736
APA StyleStadnik, J., Kęska, P., Gazda, P., Siłka, Ł., & Kołożyn-Krajewska, D. (2022). Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat. Applied Sciences, 12(22), 11736. https://doi.org/10.3390/app122211736