Marination as a Hurdle to Microbial Pathogens and Spoilers in Poultry Meat Products: A Brief Review
Abstract
:1. Introduction
1.1. Growth in Poultry Meat Consumption and Its Risks
1.2. Campylobacter and Salmonella, Foodborne Pathogens
1.3. Food Loss and Spoilage Bacteria
1.4. Current Safety Measures against Foodborne Pathogens in Poultry Meat
2. Marination
3. Antimicrobial Activity of Natural Compounds
3.1. Essential Oils and Extracts from Aromatic Herbs
3.2. Organic Acids
3.3. Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Farrell, D. The role of poultry in human nutrition: The importance of poultry meat and eggs, especially for children and women. In Poultry Development Review; FAO: Rome, Italy, 2013; pp. 1–2. [Google Scholar]
- Pateiro, M.; Munekata, P.; Sant’Ana, A.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Piernas, C.; Cook, B.; Jebb, S. Trends in UK meat consumption: Analysis of data from years 1–11 (2008-09 to 2018-19) of the national diet and nutrition survey rolling programme. Lancet Planet. Health 2021, 5, e699–e708. [Google Scholar] [CrossRef]
- Agricultural Output—Meat Consumption—OECD Data. Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 30 September 2022).
- Hafez, H.; Attia, Y.; Bovera, F.; Abd El-Hack, M.; Khafaga, A.; de Oliveira, M. Influence of COVID-19 on the poultry production and environment. Environ. Sci. Pollut. Res. 2021, 28, 44833–44844. [Google Scholar] [CrossRef] [PubMed]
- OECD-FAO Agricultural Outlook 2021–2030. Available online: https://www.fao.org/publications/oecd-fao-agricultural-outlook/2021-2030/en/ (accessed on 30 September 2022).
- Steven, J.; Henson, J.; Unnevehr, L.; Grace, D.; Cassou, E. The Safe Food Imperative: Accelerating Progress in Low-and Middle-Income Countries; Agriculture and Food Series; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- EFSA; ECDC. The European Union one health 2020 zoonoses report. EFSA J. 2021, 19, 85–102. [Google Scholar]
- García-Sánchez, L.; Melero, B.; Rovira, J. Campylobacter in the food chain. In Biological Emerging Risks in Foods, 1st ed.; Rodriguez-Lázaro, D., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 86, pp. 215–252. [Google Scholar]
- Sahin, O.; Kassem, I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in poultry: Ecology and potential interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef]
- Sheppard, S.; Maiden, M. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb. Perspect. Biol. 2015, 7, a018119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef]
- Seliwiorstow, T.; Baré, J.; Berkvens, D.; Van Damme, I.; Uyttendaele, M.; De Zutter, L. Identification of risk factors for Campylobacter contamination levels on broiler carcasses during the slaughter process. Int. J. Food Microbiol. 2016, 226, 26–32. [Google Scholar] [CrossRef]
- Chantarapanont, W.; Berrang, M.; Frank, J. Direct microscopic observation, and viability determination of Campylobacter jejuni on chicken skin. J. Food Prot. 2003, 66, 2222–2230. [Google Scholar] [CrossRef] [Green Version]
- Casaburi, A.; Piombino, P.; Nychas, G.-J.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Apetrei, C.; Lozano, J.; Anyogu, A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T.F. Spoilage of meat products. In Food Microbiology: Principles into Practice; Erkmen, O., Bozoglu, T.F., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 1, pp. 279–295. [Google Scholar]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Compr. Rev. Food Sci. Food Saf. 2016, 16, 96–123. [Google Scholar]
- Marmion, M.; Ferone, M.T.; Whyte, P.; Scannell, A.G.M. The changing microbiome of poultry meat; from farm to fridge. Food Microbiol. 2021, 99, 103823. [Google Scholar] [CrossRef]
- Li, S.; Mann, D.A.; Zhang, S.; Qi, Y.; Meinersmann, R.J.; Deng, X. Microbiome-informed food safety and quality: Longitudinal consistency and cross-sectional distinctiveness of retail chicken breast microbiomes. mSystems 2020, 5, e00589-20. [Google Scholar] [CrossRef] [PubMed]
- McClure, P.J.; Baranyi, J.; Boogard, E.; Kelly, T.M.; Roberts, T.A. A predictive model for the combined effect of pH, sodium chloride and storage temperature on the growth of Brochothrix thermosphacta. Int. J. Food Microbiol. 1993, 19, 161–178. [Google Scholar] [CrossRef]
- Illikoud, N.; Rossero, A.; Chauvet, R.; Courcoux, P.; Pilet, M.-F.; Charrier, T.; Jaffrès, E.; Zagorec, M. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiol. 2019, 81, 22–31. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K.; Singh, V.K.; Ghosh, S.; Verma, H.; Kumar, A. Plant growth promoting bacteria as biocontrol agents against diseases of cereal crops. In Food Security and Plant Disease Management; Woodhead Publishing: Sawston, UK, 2021; pp. 221–239. [Google Scholar]
- Andreani, N.A.; Carraro, L.; Martino, M.E.; Fondi, M.; Fasolato, L.; Miotto, G.; Magro, M.; Vianello, F.; Cardazzo, B. A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens. Int. J. Food Microbiol. 2015, 213, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Notararigo, S.; Nácher-Vázquez, M.; Ibarburu, I.; Werning, M.L.; de Palencia, P.F.; Dueñas, M.T.; Aznar, R.; López, P.; Prieto, A. Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr. Polym. 2013, 93, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Remenant, B.; Jaffrès, E.; Dousset, X.; Pilet, M.-F.; Zagorec, M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol. 2015, 45, 45–53. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- ReFED—Food Waste Monitor. Available online: https://insights-engine.refed.org/food-waste-monitor?view=overview&year=2019 (accessed on 30 September 2022).
- Desa, U.N. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2016. [Google Scholar]
- FAO. Food Wastage Footprint: Impacts on Natural Resources—Summary Report; FAO: Rome, Italy, 2013. [Google Scholar]
- Alter, T. Prevention and mitigation strategies for Campylobacter with focus on poultry production. In Campylobacter: Features, Detection, and Prevention of Foodborne Disease, 1st ed.; Klein, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 11–129. [Google Scholar]
- Lu, T.; Marmion, M.; Ferone, M.; Wall, P.; Scannell, A. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br. Poult. Sci. 2020, 62, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, J.; Rodrigues da Costa, M.; Nesbakken, T.; Meemken, D. Assessment of the effectiveness of pre-harvest meat safety interventions to control foodborne pathogens in broilers: A systematic review. Curr. Clin. Microbiol. Rep. 2021, 8, 21–30. [Google Scholar] [CrossRef]
- Ariza, J.; Bareille, N.; Oberle, K.; Guatteo, R. Current recommendations for footbath solutions renewal rates in dairy cattle: The need for adaptation? Animal 2019, 13, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.; Callaway, T.; Stratakos, A.; Gundogdu, O.; Corcionivoschi, N. A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front. Microbiol. 2018, 9, 2002. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.; Elvers, K.; Dopfer, D.; Hansson, I.; Jones, P.; James, S.; Gittins, J.; Stern, N.; Davies, R.; Connerton, I.; et al. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl. Environ. Microbiol. 2011, 77, 8605–8614. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Naz, S. The applications of probiotics in poultry production. Worlds Poult. Sci. J. 2013, 69, 621–632. [Google Scholar] [CrossRef]
- Carvalho, C.; Gannon, B.; Halfhide, D.; Santos, S.; Hayes, C.; Roe, J.; Azeredo, J. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 2010, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.; Connerton, P.; Connerton, I. Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front. Microbiol. 2019, 10, 476. [Google Scholar] [CrossRef]
- Stern, N.; Svetoch, E.; Eruslanov, B.; Kovalev, Y.; Volodina, L.; Perelygin, V.; Mitsevich, E.; Mitsevich, I.; Levchuk, V. Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J. Food Prot. 2005, 68, 1450–1453. [Google Scholar] [CrossRef]
- Svetoch, E.; Eruslanov, B.; Kovalev, Y.; Mitsevich, E.; Mitsevich, I.; Levchuk, V.; Fursova, N.; Perelygin, V.; Stepanshin, Y.; Teymurasov, M.; et al. Antimicrobial activities of bacteriocins E 50–52 and B 602 against antibiotic-resistant strains involved in nosocomial infections. Probiotics Antimicrob. Proteins 2009, 1, 136–142. [Google Scholar] [CrossRef]
- Silverside, D.; Jones, M. Small-Scale Poultry Processing; FAO: Rome, Italy, 1992; p. 98. [Google Scholar]
- Davis, M.; Conner, D. Survival of Campylobacter jejuni on poultry skin and meat at varying temperatures. Poult. Sci. 2007, 86, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Silano, V.; Barat Baviera, J.; Bolognesi, C.; Brüschweiler, B.; Chesson, A.; Cocconcelli, P.; Crebelli, R.; Gott, D.; Grob, K.; Lampi, E.; et al. Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. EFSA J. 2018, 16, e05482. [Google Scholar]
- Georgsson, F.; Þorkelsson, Á.; Geirsdóttir, M.; Reiersen, J.; Stern, N. The Influence of freezing and duration of storage on Campylobacter and indicator bacteria in broiler carcasses. Food Microbiol. 2006, 23, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Chaves, B.; Han, I.; Dawson, P.; Northcutt, J. Survival of artificially inoculated Escherichia coli and Salmonella Typhimurium on the surface of raw poultry products subjected to crust freezing. Poult. Sci. 2011, 90, 2874–2878. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Melendrez, M.; Ryan, F. Salmonella. In Food Microbiology: Fundamentals and Frontiers, 5th ed.; Doyle, M., Diez-Gonzalez, F., Hill, C., Eds.; Wiley & Sons: Cambridge, MA, USA, 2020; pp. 225–262. [Google Scholar]
- FSIS-USDA. Safe Minimum Internal Temperature Chart. Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/safe-temperature-chart (accessed on 30 September 2022).
- Langsrud, S.; Sørheim, O.; Skuland, S.; Almli, V.; Jensen, M.; Grøvlen, M.; Ueland, Ø.; Møretrø, T. Cooking chicken at home: Common or recommended approaches to judge doneness may not assure sufficient inactivation of pathogens. PLoS ONE 2020, 15, e0230928. [Google Scholar] [CrossRef]
- Cardoso, M.; Ferreira, V.; Truninger, M.; Maia, R.; Teixeira, P. Cross-contamination events of Campylobacter spp. in domestic kitchens associated with consumer handling practices of raw poultry. Int. J. Food Microbiol. 2021, 338, 108984. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, J. Microbiological ecology of marinated meat products. Meat Sci. 2005, 70, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, C.; McKee, S. Marination to improve functional properties and safety of poultry meat. J. Appl. Poult. Res. 2007, 16, 113–120. [Google Scholar] [CrossRef]
- Birk, T.; Grønlund, A.; Christensen, B.; Knøchel, S.; Lohse, K.; Rosenquist, H. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat. J. Food Prot. 2010, 73, 258–265. [Google Scholar] [CrossRef]
- Latoch, A.; Libera, J. Quality and safety of pork steak marinated in fermented dairy products and sous-vide cooked. Sustainability 2019, 11, 5644. [Google Scholar] [CrossRef] [Green Version]
- Xiong, G.; Fu, X.; Pan, D.; Qi, J.; Xu, X.; Jiang, X. Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrason. Sonochem. 2020, 60, 104808. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.M.; Cruz-Romero, M.C.; Duffy, G.; Kerry, J.P. Improving marinade absorption and shelf life of vacuum packed marinated pork chops through the application of high pressure processing as a hurdle. Food Packag. Shelf Life 2019, 21, 100350. [Google Scholar] [CrossRef]
- Bowker, B.C.; Callahan, J.A.; Solomon, M.B. Effects of hydrodynamic pressure processing on the marination and meat quality of turkey breasts. Poult. Sci. 2010, 89, 1744–1749. [Google Scholar] [CrossRef] [PubMed]
- Karyotis, D.; Skandamis, P.N.; Juneja, V.K. Thermal inactivation of Listeria monocytogenes and Salmonella spp. in sous-vide processed marinated chicken breast. Food Res. Int. 2017, 100, 894–898. [Google Scholar] [CrossRef]
- Moon, H.; Kim, N.H.; Kim, S.H.; Kim, Y.; Ryu, J.H.; Rhee, M.S. Teriyaki sauce with carvacrol or thymol effectively controls Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and indigenous flora in marinated beef and marinade. Meat Sci. 2017, 129, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Evrendilek, G.A. High Hydrostatic Processing of Marinated Ground Chicken Breast: Exploring the Effectiveness on Physicochemical, Textural and Sensory Properties and Microbial Inactivation. Food Control 2022, 142, 109258. [Google Scholar] [CrossRef]
- İncili, G.K.; Akgöl, M.; Aydemir, M.E.; Alan, S.; Mutlu, M.; İlhak, O.İ.; Öksüztepe, G. Fate of Listeria monocytogenes and Salmonella Typhimurium in homemade marinade and on marinated chicken drumsticks, wings and breast meat. LWT 2020, 134, 110231. [Google Scholar] [CrossRef]
- Kiprotich, S.; Mendonça, A.; Dickson, J.; Shaw, A.; Thomas-Popo, E.; White, S.; Moutiq, R.; Ibrahim, S.A. Thyme oil enhances the inactivation of Salmonella Enterica on raw chicken breast meat during marination in lemon juice with added Yucca schidigera extract. Font. Nutr. 2021, 7, 619023. [Google Scholar] [CrossRef] [PubMed]
- Zakarienė, G.; Rokaitytė, A.; Ramonaitė, S.; Novoslavskij, A.; Mulkytė, K.; Zaborskienė, G.; Malakauskas, M. The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings. J. Food Sci. 2015, 80, M627–M634. [Google Scholar] [CrossRef] [PubMed]
- Sengun, I.Y.; Kilic, G.; Ozturk, B. The effects of koruk products used as marination liquids against foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Typhimurium) inoculated on poultry meat. LWT 2020, 133, 110148. [Google Scholar] [CrossRef]
- Juneja, V.K.; Fan, X.; Peña-Ramos, A.; Diaz-Cinco, M.; Pacheco-Aguilar, R. The effect of grapefruit extract and temperature abuse on growth of Clostridium perfringens from spore inocula in marinated, sous-vide chicken products. Innov. Food Sci. Emerg. Technol. 2006, 7, 100–106. [Google Scholar] [CrossRef]
- Jovanović, A.; Djordjević, V.; Petrović, P.; Pljevljakušić, D.; Zdunić, G.; Šavikin, K.; Bugarski, B. The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100328. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Serrano, C.; Matos, O.; Neng, N.; Nogueira, J.; Saraiva, J.; Nunes, M. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013, 93, 2707–2714. [Google Scholar] [CrossRef]
- Calo, J.; Crandall, P.; O’Bryan, C.; Ricke, S. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- De Matos, S.; Teixeira, H.; de Lima, Á.; Veiga-Junior, V.; Koester, L. Essential oils and isolated terpenes in nanosystems designed for topical administration: A review. Biomolecules 2019, 9, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, L.; Alves, F.; Andrade, B.; Albano, M.; Rall, V.; Fernandes, A.; Buzalaf, M.; Leite, A.; de Pontes, L.; dos Santos, L.; et al. Proteomic analysis and antibacterial resistance mechanisms of Salmonella Enteritidis submitted to the inhibitory effect of Origanum vulgare essential oil, thymol and carvacrol. J. Proteom. 2020, 214, 103625. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2015, 6, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavaric, N.; Mozina, S.; Kladar, N.; Bozin, B. Chemical Profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Guimarães, A.; Meireles, L.; Lemos, M.; Guimarães, M.; Endringer, D.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanissery, R.; Kathariou, S.; Smith, D.P. Rosemary oil, clove oil, and a mix of thyme-orange essential oils inhibit Salmonella and Campylobacter in vitro. J. Appl. Poult. Res. 2014, 23, 221–227. [Google Scholar] [CrossRef]
- Kalli, S.; Araya Cloutier, C.; Hageman, J.; Vincken, J. Author correction: Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Sci. Rep. 2022, 12, 3738. [Google Scholar] [CrossRef] [PubMed]
- Ločárek, M.; Nováková, J.; Klouček, P.; Hošt’álková, A.; Kokoška, L.; Gábrlová, L.; Šafratová, M.; Opletal, L.; Cahlíková, L. Antifungal and antibacterial activity of extracts and alkaloids of selected Amaryllidaceae species. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, X.; Wu, H.; Wang, H.; Bian, H.; Zhu, Y.; Xu, W.; Liu, F.; Wang, D.; Fu, L. Antibacterial activity and action mode of chlorogenic acid against Salmonella Enteritidis, a foodborne pathogen in chilled fresh chicken. World J. Microbiol. Biotechnol. 2020, 36, 24. [Google Scholar] [CrossRef]
- Yang, S.; Yusoff, K.; Thomas, W.; Akseer, R.; Alhosani, M.; Abushelaibi, A.; Lim, S.; Lai, K. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Sci. Rep. 2020, 10, 819. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liu, C.; Cai, J.; Zhang, W.; Qi, W.; Wang, Z.; Liu, Z.; Yang, Y. Broad-spectrum antimicrobial activity, chemical composition and mechanism of action of garlic (Allium sativum) extracts. Food Control 2018, 86, 117–125. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2019, 60, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Parai, D.; Chattopadhyay, S.; Mukherjee, S. Andrographolide: Antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol. 2017, 62, 237–244. [Google Scholar] [CrossRef]
- Geethalakshmi, R.; Sundaramurthi, J.; Sarada, D. Antibacterial activity of flavonoid isolated from Trianthema decandra against Pseudomonas aeruginosa and molecular docking study of Fabz. Microb. Pathog. 2018, 121, 87–92. [Google Scholar] [CrossRef]
- Ahmed, J.; Arfat, Y.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. J. Food Sci. 2018, 83, 1299–1310. [Google Scholar] [CrossRef]
- Gómez, B.; Barba, F.; Domínguez, R.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Toldrá, F.; Lorenzo, J. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci. Technol. 2018, 82, 135–147. [Google Scholar] [CrossRef]
- Keykhosravy, K.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Chitosan-loaded nanoemulsion containing Zataria multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020, 150, 904–913. [Google Scholar] [CrossRef]
- Quesada, J.; Sendra, E.; Navarro, C.; Sayas-Barberá, E. Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods 2016, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Liu, X.; Zhao, S.; Li, S.; Zhang, J. Research note: Preservative effect of compound spices extracts on marinated chicken. Poult. Sci. 2022, 101, 101778. [Google Scholar] [CrossRef] [PubMed]
- Thanissery, R.; Smith, D.P. Marinade with thyme and orange oils reduces Salmonella Enteritidis and Campylobacter coli on inoculated broiler breast fillets and whole wings. Poult. Sci. 2014, 93, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Hosseini, M.; Sharifan, A. Plasma-assisted preservation of breast chicken fillets in essential oils-containing marinades. LWT 2020, 131, 109759. [Google Scholar] [CrossRef]
- Karam, L.; Roustom, R.; Abiad, M.G.; El-Obeid, T.; Savvaidis, I.N. Combined Effects of thymol, carvacrol and packaging on the shelf-life of marinated chicken. Int. J. Food Microbiol. 2019, 291, 42–47. [Google Scholar] [CrossRef]
- Osaili, T.M.; Hasan, F.; Dhanasekaran, D.K.; Obaid, R.S.; Al-Nabulsi, A.A.; Ayyash, M.; Karam, L.; Savvaidis, I.N.; Holley, R. Effect of active essential oils added to chicken tawook on the behaviour of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 during storage. Int. J. Food Microbiol. 2021, 337, 108947. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Off. J. Eur. Union 2008, 354, 16–33. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=celex:32008R1333 (accessed on 2 August 2022).
- FSIS-USDA. Guidance on Ingredients and Sources of Radiation Used to Reduce Microorganisms on Carcasses, Ground Beef, and Beef Trimmings. 2013. Available online: https://www.fsis.usda.gov/guidelines/2013-0017 (accessed on 2 August 2022).
- Mathur, P.; Schaffner, D. Effect of lime juice on Vibrio parahaemolyticus and Salmonella Enterica inactivation during the preparation of the raw fish dish ceviche. J. Food Prot. 2013, 76, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Coban, H. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2019, 43, 569–591. [Google Scholar]
- McLaughlin, S.; Dilger, J. Transport of protons across membranes by weak acids. Physiol. Rev. 1980, 60, 825–863. [Google Scholar] [CrossRef]
- Taylor, M.; Joerger, R.; Palou, E.; López-Malo, A.; Avila-Sosa, R.; Calix-Lara, T. Alternatives to traditional antimicrobials for organically processed meat and poultry. In Organic Meat Production and Processing; Ricke, S.C., van Loo, E.J., Johnson, M.G., O’Bryan, C.A., Eds.; John Wiley & Sons: Cambridge, MA, USA, 2012; Volume 53, pp. 211–237. [Google Scholar]
- Ullah, A.; Orij, R.; Brul, S.; Smits, G. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78, 8377–8387. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.; Alvarado, C.; Brashears, M.; Thompson, L.; Boyce, J. Marination of turkey breast fillets to control the growth of Listeria monocytogenes and improve meat quality in deli loaves. Poult. Sci. 2007, 86, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Al-Holy, M.A.; Abu Ghoush, M.H.; Al-Nabulsi, A.A.; Qatatsheh, A.A.; Shahbaz, H.M.; Osaili, T.M.; Holley, R.A. The use of malic and acetic acids in washing solution to control Salmonella spp. on chicken breast. J. Food Sci. 2018, 83, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Lytou, A.E.; Tzortzinis, K.; Skandamis, P.N.; Nychas, G.-J.E.; Panagou, E.Z. Investigating the influence of organic acid marinades, storage temperature and time on the survival/inactivation interface of Salmonella on chicken breast fillets. Int. J. Food Microbiol. 2019, 299, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Doležalová, M.; Molatová, Z.; Buňka, F.; Březina, P.; Marounek, M. Effect of organic acids on growth of chilled chicken skin microflora. J. Food Saf. 2010, 30, 353–365. [Google Scholar] [CrossRef]
- Fernández, M.; Rodríguez, A.; Fulco, M.; Soteras, T.; Mozgovoj, M.; Cap, M. Effects of lactic, malic and fumaric acids on Salmonella spp. counts and on chicken meat quality and sensory characteristics. JFST 2020, 58, 3817–3824. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xia, X.; Liu, A.; Zou, L.; Zhou, K.; Han, X.; Han, G.; Liu, S. Effects of combined organic acid treatments during the cutting process on the natural microflora and quality of chicken drumsticks. Food Control 2016, 67, 1–8. [Google Scholar] [CrossRef]
- Carneiro, A.; Couto, J.; Mena, C.; Queiroz, J.; Hogg, T. activity of wine against Campylobacter jejuni. Food Control 2008, 19, 800–805. [Google Scholar] [CrossRef]
- Fernandes, J.; Gomes, F.; Couto, J.; Hogg, T. The Antimicrobial effect of wine on Listeria innocua in a model stomach system. Food Control 2007, 18, 1477–1483. [Google Scholar] [CrossRef]
- Just, J.; Daeschel, M. Antimicrobial effects of wine on Escherichia coli O157:H7 and Salmonella Typhimurium in a model stomach system. J. Food Sci. 2003, 68, 285–290. [Google Scholar] [CrossRef]
- Vaz, M.; Hogg, T.; Couto, J. The Antimicrobial effect of wine on Bacillus cereus in simulated gastro-intestinal conditions. Food Control 2012, 28, 230–236. [Google Scholar] [CrossRef]
- Waite, J.; Daeschel, M. Contribution of wine components to inactivation of food-borne pathogens. J. Food Sci. 2007, 72, M286–M291. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.; Torres, C.; Oliveira, A.; Pereira, J.; Amaral, J.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Boulton, R.; Singleton, V.; Bisson, L.; Kunkee, R. (Eds.) The role of sulfur dioxide in wine. In Principles and Practices of Winemaking; Springer: Boston, MA, USA, 1999; pp. 448–473. [Google Scholar]
- Santoro, H.; Skroza, D.; Dugandžić, A.; Boban, M.; Šimat, V. Antimicrobial activity of selected red and white wines against Escherichia coli: In vitro inhibition using fish as food matrix. Foods 2020, 9, 936. [Google Scholar] [CrossRef]
- Isohanni, P.; Alter, T.; Saris, P.; Lyhs, U. Wines as possible meat marinade ingredients possess antimicrobial potential against Campylobacter. Poult. Sci. 2010, 89, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.; Levin, C.; Mandrell, R. Recipes for antimicrobial wine marinades against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enterica. J. Food Sci. 2007, 72, M207–M213. [Google Scholar] [CrossRef] [PubMed]
- Møretrø, T.; Daeschel, M.A. Wine is bactericidal to foodborne pathogens. J. Food Sci. 2006, 69, M251–M257. [Google Scholar] [CrossRef]
Marinade Composition | Concentrations Applied | Microorganisms Tested | Major Effects | Tested Matrix | Marination and Storage Conditions | References |
---|---|---|---|---|---|---|
Teriyaki sauce (TS): soy sauce, vinegar, wine, garlic, onion powder, spices, water, and high fructose corn syrup. With or without carvacrol (CV) or thymol (TM) | Carvacrol (0.3%), Thymol (0.5%), Teriyaki sauce (1:1 w/v) | Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes | Counts of S. Typhimurium significantly reduce after 7 days at 4 °C both TS + CV and TS + TM. | Chicken breast | Immersion for 7 days at 4 °C. | [60] |
Homemade marinade: table wine, balsamic vinegar, tomato paste, salt, black pepper, red pepper, and garlic powder | Salmonella spp., Total coliform count, Total aerobic mesophilic bacteria, Yeast and moulds | HPP treatment on the marinated chicken reduced the early Salmonellae and total coliform counts (3.53 ± 0.12 and 6.59 ± 0.11 log10 CFU/g) to undetectable levels. | Chicken breast | HPP exposure in the following conditions: 400 MPa/15 min and 600 MPa for 5, 10, and 15 min. | [61] | |
Homemade marinade: tomato paste, red and black pepper, cumin, lemon juice, garlic | Yucca schidigera (0.5% w/v), Thyme oil (0.1 and 0.2% w/v), Marinade (2:1 v/w) | S. Typhimurium, L. monocytogenes | S. Typhimurium counts decreased between 0.9 and 1.4 log10 CFU/g at the end of storage. Bacteriostatic effect against L. monocytogenes. | Chicken breast, wings, and drumsticks | Dry rub and storage for 10 days at 4 °C. | [62] |
Lemon juice and Yucca schidigera extract marinade enhanced with thyme oil | Five Salmonella serovars: Enteritidis, Heidelberg, Typhimurium, Gaminara, Oranienburg | Marinades with thyme oil showed higher antimicrobial activity against Salmonella after 8 h (2.62–3.91 log10 CFU/sample reductions) than marinades only containing lemon juice (1.12 log10 CFU/sample reduction) and yucca extract (1.42 log10 CFU/sample reduction). Synergetic action between EOs and organic acids is suggested. | Chicken breast | Immersion for 8 h at 22 °C. | [63] | |
Six marinade types: four containing (thyme, rosemary, basil, and marjoram) one commercially available marinade, and one commercially available marinade enhanced with bioactive compounds | Campylobacter jejuni | The studied marinades showed weak antimicrobial action. Thyme-based marinade achieves the greatest antibacterial activity reducing 1.04 log10 CFU/g after 7 days at 4 °C. | Broiler wings | Dry rub marinade 1, 3, 4, and 7 days at 4 °C. | [64] | |
Commercial teriyaki marinade | L. monocytogenes Five Salmonella serovars: Thompson, Hadar, Montevideo, Heidelberg, Typhimurium, Copenhagen | Marination enhanced the sensitivity of the tested pathogens to the lethal heat conditions of the sous-vide process. | Chicken breast | Chicken breasts were immersed and vacuum sealed at 4 °C for 18 h and then thermally processed. | [59] | |
Food marinating ingredients added with different organic acids: tartaric, acetic, lactic, malic, and citric acid | 0.3 to 10% | C. jejuni | On the broth models, organic acids exerted higher antimicrobial activity than on food matrices. On chicken fillets, organic acid marinades resulted in a 1.2 log10 CFU/g after 3 days at 4 °C. | In vitro, chicken fillets, and medallions | Chicken fillets were immersed. On Medallions, acid was spread. | [54] |
Marinades containing koruk juice (KJ), dried koruk pomace (KP) with or without salt (S), and thyme (T) | KJ: 25 and 50% KP: 1 and 2% S: 1% T: 0.1% | L. monocytogenes, E. coli O157:H7 S. Typhimurium | For the samples inoculated with low pathogen levels, the reduction from the marination leads to a decrease below the detection limit. | Poultry meat | Immersion for 2, 24, and 48 h at 4 °C. | [65] |
Marination sauce supplemented with Citricidal® liquid concentrate | 50, 100, 200 ppm | Clostridium perfringens | In marinated samples with 200 ppm of Citricidal® at storage temperatures, C. perfringens spores experienced lower growth rates after germination. Furthermore, the marinade-supplemented chicken samples did not experience major changes in meat colour or shear force of lipid oxidation. | Chicken breast | The marinade was added to the chicken breast, mixed for 2′, and vacuum sealed. Afterwards, the bags were thermally processed at 71.1 °C for 1 h. | [66] |
EOs Employed | Concentrations Applied | Microorganisms Tested | Major Effects | Matrix | Marination and Storage | References |
---|---|---|---|---|---|---|
21 different EOs and several combinations | 0.50% | Spoilage bacteria | Only eight of all tested EOs produced antimicrobial activity. The optimal compound spices extract, for reducing spoilage bacteria, consisted of 2.4 µL/mL of cassia bark EO, 1.0 µL/mL of cinnamon EO, 3.5 µL/mL of tea tree EO, and 9.0 µL/mL of angelica EO. | In vitro | The essential oils were directly applied on plates coated with putrefying bacteria liquid. | [88] |
Thyme and orange EOs | Salmonella Enteritidis Campylobacter coli | Treatments with thyme, orange oils, and vacuum tumbling significantly reduced the viable counts of S. Enteritidis and C. coli by 2.3–2.6 and 3.1–3.6 log10 CFU/g, respectively. | Chicken breast fillets and wings | Vacuum tumbling for 20′ with a10% (v/w) pre-chilled (4 °C) marinade solution. | [89] | |
Thyme and orange EOs | 1.0% (w/w) | Escherichia coli Staphylococcus aureus | Treatments with EOs and atmospheric cold plasma (APC), along with their combinations, reduced bacterial growth. EOs contributed to the increased sensibility of E. coli to APC treatment. | Chicken breast fillets | Immersion in a marinade solution for 2 min followed by storage at 4 °C and exposure to APC. | [90] |
Carvacrol (CA) and thymol (TH) | 0.4 and 0.8% (v/w) | Pseudomonas spp. Brochothrix thermosphacta E. coli Yeast and moulds Total coliforms Total viable count (TVC) | Together with vacuum packaging, EOs at 0.8% delayed the growth of spoilage bacteria. The combination of EOs at 0.4% with both packaging methods increased the products’ shelf-life by 6 to >12 days. | Chicken breast fillets | Immersion in a marinade solution with storage at 4 °C under aerobic or vacuum packaging. | [91] |
Carvacrol, cinnamaldehyde (CI) and thymol | 1.0 and 2.0% (v/v) | Listeria monocytogenes Salmonella spp. E. coli O157:H7 | The marination decreased all pathogen counts. EOs did not enhance the antimicrobial action against L. monocytogenes. 1.0% CI decreased Salmonella counts by 1.0 log10 CFU/g. For E. coli O157:H7 EOs lead to a ≤2.4 log10 CFU/g reduction. | Chicken breast | Immersion in a marinade solution with storage at 4 or 10 °C for 1, 4, and 7 days. | [92] |
Propolis extract | 4.0, 8.0, 12.0% (v/w) | S. aureus E. coli Yeast and moulds TVC | During storage, bacterial growth was decreased by the propolis extracts, with higher concentrations yielding higher antimicrobial activities. Furthermore, propolis reduced the changes in meat texture quality throughout the storage period. | Chicken breast | Immersion in a marinade solution with storage at 4 °C for 3, 6, 9, and 12 days. | [93] |
Organic Acids Employed | Concentrations Applied | Microorganisms Tested | Major Effects | Food Matrix | Exposure Conditions | References |
---|---|---|---|---|---|---|
Malic acid (MA) and Acetic acid (AC) | 5 mg/mL | Five Salmonella serovars: Typhimurium, Heidelberg, Copenhagen, Enteritidis, and Kentucky. | At 4 °C, the solutions containing both malic and acetic acid were able to ensure a 5-log reduction in Salmonella on the chicken breast while also reducing mesophilic aerobic bacteria and lactic acid bacteria. | Chicken breast | Immersion for 5 min with shaking at 150 rpm/min followed by storage at 4 °C for 10 days. | [102] |
Vinegar (Acetic acid-AC) and lemon juice (Citric acid-CA) | 4%, 2%, 1.5%, 1% and 0.5% (v/v) | Three Salmonella serovars: Typhimurium, Enteritidis and Infantis. | Higher concentrations of organic acids (2–4% v/v) were the most effective against the tested pathogens. The effect of AC on the pathogen was more pronounced compared to CA. The response to acid stress was strain-dependent. | Chicken breast fillets | Immersion for 1 h at 4 °C. Storage at 4, 8, 12 and 16 °C for 9 days. | [103] |
Citric acid (CA), Latic acid (LA) | 0.2–10% | Chicken skin microbiota: mesophilic and psychotropic bacteria, coliforms, yeasts, and moulds. | The organic acids improved the shelf life of the tested carcasses while significantly reducing the microbial load of the carcass. | Chicken skin | Immersion for 1 min followed by storage for 3 days at 6 ± 2 °C. | [104] |
LA, MA and Fumaric acid (FA) | 3% | Salmonella spp. | All tested acids reduced Salmonella counts by more than 1 log10 CFU/g, with FA being the most effective one. | Chicken breast | Immersion for 15 s followed by storage at 4 °C for 10 days. | [105] |
LA and CA | 0.5%, 1.0%, 1.5%, 2.0% (w/v) | Chicken meat natural microbiota, Salmonella spp. and Staphylococcus aureus. | After the administration of the spray-washing treatment with lactic acids and citric acid, microbial loads on the chicken drumsticks significantly decreased—most effective: 0.5% LA, 1% CA, spray-washing for 30 s. | Chicken drumstick | Spray-washing for 15, 30, 45, 60 s. | [106] |
Wine Employed | Microorganisms Tested | Major Effects | Matrix | Exposure Conditions | References |
---|---|---|---|---|---|
Red wine (Sauvignon Blanc) and White wine (Cabernet Sauvignon) | Campylobacter jejuni Campylobacter coli | For the broth models, white wine reduced up to 7 log10 CFU/mL of Campylobacter spp. in just 15 min. However, in the food matrix, the identical wine only reduced Campylobacter loads by 1.0 log10 CFU/mL over 48 h. | Broth model and Chicken breast fillets | Immersion for 10, 15, and 30 min, and 1, 3 h at room temperature. 24 and 48 h at 4 °C. | [115] |
Red wine (Douro) | C. jejuni | In broth, undiluted wine and its components drastically reduced the C. jejuni counts by approximately 7.0 log10 CFU/g. Furthermore, ethanol and the organic acids present in the wine is suggested to work synergistically. Additionally, in the stomach model, the wine enhanced the antimicrobial activity of the gastric fluid against C. jejuni. | Broth and stomach model | The pathogen was directly exposed to the wine solution both in broth and in the stomach model. | [107] |
Red wine (Pinot Noir) and white wine (Chardonnay) | Escherichia coli O157:H7 Salmonella Typhimurium | When added directly into wine solutions, both pathogens were rapidly inactivated after 1 h for E. coli and half an hour for Salmonella. However, in the stomach model, the wine showed no antimicrobial action against E. coli O157:H7, whereas Salmonella was reduced to undetectable levels after 2 h of exposure to the wine. For Salmonella, the primary antimicrobial activity of the tested wine showed to be acid related. | Broth and stomach model | The pathogen was directly exposed to the wine solution both in broth and in the stomach model. | [109] |
Red wine (Cabernet) and white wine (Chardonnay) | E. coli O157:H7 Listeria monocytogenes S. Typhimurium Staphylococcus aureus | Of all the tested pathogens, Salmonella was the most susceptible pathogen to red wine, with S. aureus presenting itself as the least susceptible to both wines. Ethanol and organic acids appeared to work synergistically with one another. | Broth model | The pathogen was directly exposed to the wine solution. | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meneses, R.; Teixeira, P. Marination as a Hurdle to Microbial Pathogens and Spoilers in Poultry Meat Products: A Brief Review. Appl. Sci. 2022, 12, 11774. https://doi.org/10.3390/app122211774
Meneses R, Teixeira P. Marination as a Hurdle to Microbial Pathogens and Spoilers in Poultry Meat Products: A Brief Review. Applied Sciences. 2022; 12(22):11774. https://doi.org/10.3390/app122211774
Chicago/Turabian StyleMeneses, Rui, and Paula Teixeira. 2022. "Marination as a Hurdle to Microbial Pathogens and Spoilers in Poultry Meat Products: A Brief Review" Applied Sciences 12, no. 22: 11774. https://doi.org/10.3390/app122211774
APA StyleMeneses, R., & Teixeira, P. (2022). Marination as a Hurdle to Microbial Pathogens and Spoilers in Poultry Meat Products: A Brief Review. Applied Sciences, 12(22), 11774. https://doi.org/10.3390/app122211774