Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review
Abstract
:1. Introduction
2. Methods
3. Review
3.1. Devices and Manufacturers
3.2. Appearance and Mounting
3.3. Battery
3.4. Sensors and Features
3.5. Communication Interface and Software
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Conley, S.; Knies, A.; Batten, J.; Ash, G.; Miner, B.; Hwang, Y.; Jeon, S.; Redeker, N.S. Agreement between actigraphic and polysomnographic measures of sleep in adults with and without chronic conditions: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 46, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2018, 14, 1209–1230. [Google Scholar] [CrossRef] [Green Version]
- Kramer, G.; Dominguez-Vega, Z.T.; Laarhoven, H.S.; Brandsma, R.; Smit, M.; van der Stouwe, A.M.; Elting, J.W.J.; Maurits, N.M.; Rosmalen, J.G.; Tijssen, M.A. Similar association between objective and subjective symptoms in functional and organic tremor. Park. Relat. Disord. 2019, 64, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Manoni, A.; Asci, F.; Liguori, C.; Irrera, F.; Suppa, A. Shedding light on nocturnal movements in Parkinson’s disease: Evidence from wearable technologies. Sensors 2020, 20, 5171. [Google Scholar] [CrossRef]
- Beniczky, S.; Polster, T.; Kjaer, T.W.; Hjalgrim, H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study. Epilepsia 2013, 54, e58–e61. [Google Scholar] [CrossRef]
- Münch, M.; Brøndsted, A.E.; Brown, S.A.; Gjedde, A.; Kantermann, T.; Martiny, K.; Mersch, D.; Skene, D.J.; Wirz-Justice, A. The effect of light on humans. In Changing Perspectives on Daylight: Science, Technology and Culture; Sanders, S., Oberst., J., Eds.; Science/AAS: Washington, DC, USA, 2017; pp. 16–23. [Google Scholar]
- Te Lindert, B.H.W.; Itzhacki, J.; van der Meijden, W.; Kringelbach, M.L.; Mendoza, J.; Van Someren, E.J.W. Bright environmental light ameliorates deficient subjective ’liking’ in insomnia: An experience sampling study. Sleep 2018, 41, zsy022. [Google Scholar] [CrossRef] [Green Version]
- CamNtech Ltd. Personal email communication. In Personal Communication; CamNtech Ltd.: Fenstanton, UK, 2022. [Google Scholar]
- LeGates, T.A.; Fernandez, D.C.; Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 2014, 15, 443–454. [Google Scholar] [CrossRef]
- Bailes, H.J.; Lucas, R.J. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc. Biol. Sci. 2013, 280, 20122987. [Google Scholar] [CrossRef] [Green Version]
- Garatachea, N.; Torres Luque, G.; González Gallego, J. Physical activity and energy expenditure measurements using accelerometers in older adults. Nutr. Hosp. 2010, 25, 224–230. [Google Scholar] [PubMed]
- Price, L.L.; Lyachev, A.; Khazova, M. Optical performance characterization of light-logging actigraphy dosimeters. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2017, 34, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lian, Z. Objective sleep assessments for healthy people in environmental research: A literature review. Indoor Air 2022, 32, e13034. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.R.; Oreskovic, N.M.; Robinson, A.I. Design and clinical feasibility of personal wearable monitor for measurement of activity and environmental exposure. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 2014, 874–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, R.R.; Chamberlain, D.; Richman, D.; Oreskovic, N.; Taveras, E. Wearable sensor and algorithm for automated measurement of screen time. In Proceedings of the 2016 IEEE Wireless Health, Bethesda, MD, USA, 25-27 October 2016; pp. 1–8. [Google Scholar]
- Fletcher, R.R.; MIT Media Lab, Cambridge, MA, USA. Personal communication. 2022. [Google Scholar]
- Rhudy, M.B.; Greenauer, N.; Mello, C. Wearable light data logger for studying physiological and psychological effects of light data. HardwareX 2020, 11, e00157. [Google Scholar] [CrossRef]
- Ambulatory Monitoring, USA. 2022. Available online: https://www.ambulatory-monitoring.com/motionlogger-actigraphs (accessed on 27 October 2022).
- Nagare, R.; Light and Health Research Center, New York, NY, USA. Personal communication, 2022.
- Blue Iris Labs, INC. (Fairfax, USA). 2022. Available online: https://blueirislabs.com/the-science/ (accessed on 27 October 2022).
- Barone, M.T.U.; Wey, D.; Schorr, F.; Franco, D.R.; Carra, M.K.; Lorenzi Filho, G.; Menna-Barreto, L. Sleep and glycemic control in type 1 diabetes. Arch. Endocrinol. Metab. 2015, 59, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilenko, K.V.; Hommes, V. Influence of artificial dusk on sleep. Sleep Biol. Rhythm. 2016, 14, 47–53. [Google Scholar] [CrossRef]
- Danilenko, K.V.; Lebedinskaia, M.Y.; Gadetskaia, E.V.; Markov, A.A.; Ivanova, Y.A.; Aftanas, L.I. A 6-day combined wake and light therapy trial for unipolar depression. J. Affect. Disord. 2019, 259, 355–361. [Google Scholar] [CrossRef]
- Sergeeva, O.Y.; Danilenko, K.V.; Revell, V.L.; Skene, D.J.; Kolodyazhniy, V.; Wirz-Justice, A. Monitoring physiological variables during simulated night shift work: The influence of nocturnal moderately bright light exposure. Soc. Light Treat. Biol. Rhythm. Abst. 2009, 22, 61. [Google Scholar]
- Borisenkov, M.F.; Tserne, T.A.; Bakutova, L.A.; Gubin, D.G. Actimetry-derived 24 h rest–activity rhythm indices applied to predict MCTQ and PSQI. Appl. Sci. 2022, 12, 6888. [Google Scholar] [CrossRef]
- Borisenkov, M.F.; Tserne, T.A.; Bakutova, L.A.; Gubin, D.G. Food addiction and emotional eating are associated with intradaily rest-activity rhythm variability. Eat. Weight. Disord. 2022. [Google Scholar] [CrossRef]
- Gubin, D.G.; Danilenko, K.V. Influences of latitude, light and COVID-19 on sleep and circadian status. ESRS-2022 Abstracts. J. Sleep Res. 2022, in press. [Google Scholar]
- Bellone, G.J.; Plano, S.A.; Cardinali, D.P.; Chada, D.P.; Vigo, D.E.; Golombek, D.A. Comparative analysis of actigraphy performance in healthy young subjects. Sleep Sci. 2016, 9, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Spitschan, M.; Garbazza, C.; Kohl, S.; Cajochen, C. Sleep and circadian phenotype in people without cone-mediated vision: A case series of five CNGB3 and two CNGA3 patients. Brain Commun. 2021, 3, fcab159. [Google Scholar] [CrossRef] [PubMed]
- Loock, A.S.; Khan Sullivan, A.; Reis, C.; Paiva, T.; Ghotbi, N.; Pilz, L.K.; Biller, A.M.; Molenda, C.; Vuori-Brodowski, M.T.; Roenneberg, T.; et al. Validation of the Munich Actimetry Sleep Detection Algorithm for estimating sleep-wake patterns from activity recordings. J. Sleep Res. 2021, 30, e13371. [Google Scholar] [CrossRef] [PubMed]
- Krempel, R.; Schleicher, D.; Jarvers, I.; Ecker, A.; Brunner, R.; Kandsperger, S. Sleep quality and neurohormonal and psychophysiological accompanying factors in adolescents with depressive disorders: Study protocol. BJPsych. Open 2022, 8, e57. [Google Scholar] [CrossRef]
- Madrid-Navarro, C.J.; Puertas Cuesta, F.J.; Escamilla-Sevilla, F.; Campos, M.; Ruiz Abellán, F.; Rol, M.A.; Madrid, J.A. Validation of a device for the ambulatory monitoring of sleep patterns: A pilot study on Parkinson’s disease. Front. Neurol. 2019, 10, 356. [Google Scholar] [CrossRef]
- Arguelles-Prieto, R.; Bonmati-Carrion, M.A.; Rol, M.A.; Madrid, J.A. Determining light intensity, timing and type of visible and circadian light from an ambulatory circadian monitoring device. Front. Physiol. 2019, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Esaki, Y.; Kitajima, T.; Obayashi, K.; Saeki, K.; Fujita, K.; Iwata, N. Daytime light exposure in daily life and depressive symptoms in bipolar disorder: A cross-sectional analysis in the APPLE cohort. J. Psychiatr. Res. 2019, 116, 151–156. [Google Scholar] [CrossRef]
- Bigalke, J.A.; Greenlund, I.M.; Nicevski, J.R.; Carter, J.R. Effect of evening blue light blocking glasses on subjective and objective sleep in healthy adults: A randomized control trial. Sleep Health 2021, 7, 485–490. [Google Scholar] [CrossRef]
- Stone, J.E.; McGlashan, E.M.; Facer-Childs, E.R.; Cain, S.W.; Phillips, A.J.K. Accuracy of the GENEActiv device for measuring light exposure in sleep and circadian research. Clocks Sleep 2020, 2, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.I.; Coe, D.P.; Larsen, C.A.; Rider, B.C.; Conger, S.A.; Bassett, D.R., Jr. Detecting indoor and outdoor environments using the ActiGraph GT3X+ light sensor in children. Med. Sci. Sports Exerc. 2014, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Tandon, P.S.; O’Neill, M.E.; Becker, A.B. Cross-sectional association of light sensor-measured time outdoors with physical activity and gross motor competency among U.S. preschool-aged children: The 2012 NHANES National Youth Fitness Survey. BMC Public Health 2022, 22, 833. [Google Scholar] [CrossRef]
- Dallmann, R.; Daqtix GmbX, Munich, Germany. Personal communication, 2021.
- Kantermann, T.; Juda, M.; Merrow, M.; Roenneberg, T. The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr. Biol. 2007, 17, 1996–2000. [Google Scholar] [CrossRef]
- Welk, G.J.; Almeida, J.; Morss, G. Laboratory calibration and validation of the Biotrainer and Actitrac activity monitors. Med. Sci. Sports Exerc. 2003, 35, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Najjar, R.P.; Wolf, L.; Taillard, J.; Schlangen, L.J.; Salam, A.; Cajochen, C.; Gronfier, C. Chronic artificial blue-enriched white light is an effective countermeasure to delayed circadian phase and neurobehavioral decrements. PLoS ONE 2014, 9, e102827. [Google Scholar] [CrossRef] [PubMed]
- Canazei, M.; Pohl, W.; Bliem, H.R.; Weiss, E.M. Acute effects of different light spectra on simulated night-shift work without circadian alignment. Chronobiol. Int. 2017, 34, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Prayag, A.S.; Jost, S.; Avouac, P.; Dumortier, D.; Gronfier, C. Dynamics of non-visual responses in humans: As fast as lightning? Front. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef]
- Tsanas, A. investigating wrist-based acceleration summary measures across different sample rates towards 24-hour physical activity and sleep profile assessment. Sensors 2022, 22, 6152. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Hamner, R.; Bierman, A.; Rea, M.S. Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res. Technol. 2013, 45, 421–434. [Google Scholar] [CrossRef]
- Higgins, P.A.; Hornick, T.R.; Figueiro, M.G. Rest-activity and light exposure patterns in the home setting: A methodological case study. Am. J. Alzheimers Dis. Other Demen. 2010, 25, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Smolders, K.C.H.J.; De Kort, Y.A.W.; van den Berg, S.M. Daytime light exposure and feelings of vitality: Results of a field study during regular weekdays. J. Environ. Psychol. 2013, 36, 270–279. [Google Scholar] [CrossRef]
- Kolodyazhniy, V.; Späti, J.; Frey, S.; Götz, T.; Wirz-Justice, A.; Kräuchi, K.; Cajochen, C.; Wilhelm, F.H. Estimation of human circadian phase via a multi-channel ambulatory monitoring system and a multiple regression model. J. Biol. Rhythm. 2011, 26, 55–67. [Google Scholar] [CrossRef]
- Huss, A.; van Wel, L.; Bogaards, L.; Vrijkotte, T.; Wolf, L.; Hoek, G.; Vermeulen, R. Shedding some light in the dark—A comparison of personal measurements with satellite-based estimates of exposure to light at night among children in the Netherlands. Environ. Health Perspect. 2019, 127, 67001. [Google Scholar] [CrossRef]
- Rabstein, S.; Burek, K.; Lehnert, M.; Beine, A.; Vetter, C.; Harth, V.; Putzke, S.; Kantermann, T.; Walther, J.; Wang-Sattler, R.; et al. Differences in twenty-four-hour profiles of blue-light exposure between day and night shifts in female medical staff. Sci. Total Environ. 2019, 653, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Latshang, T.D.; Mueller, D.J.; Lo Cascio, C.M.; Stöwhas, A.C.; Stadelmann, K.; Tesler, N.; Achermann, P.; Huber, R.; Kohler, M.; Bloch, K.E. Actigraphy of wrist and ankle for measuring sleep duration in altitude travelers. High Alt. Med. Biol. 2016, 17, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Obonyo, E.G.; Bilén, S. Wearable inertial measurement unit sensing system for musculoskeletal disorders prevention in construction. Sensors 2021, 21, 1324. [Google Scholar] [CrossRef]
- Karas, M.; Bai, J.; Strączkiewicz, M.; Harezlak, J.; Glynn, N.W.; Harris, T.; Zipunnikov, V.; Crainiceanu, C.; Urbanek, J.K. Accelerometry data in health research: Challenges and opportunities. Stat. Biosci. 2019, 11, 210–237. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data. Chronobiol. Int. 2019, 36, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Fekedulegn, D.; Andrew, M.E.; Shi, M.; Violanti, J.M.; Knox, S.; Innes, K.E. Actigraphy-based assessment of sleep parameters. Ann. Work Expo. Health 2020, 64, 350–367. [Google Scholar] [CrossRef] [Green Version]
- Nagra, M.; Rodriguez-Carmona, M.; Blane, S.; Huntjens, B. Intra- and inter-model variability of light detection using a commercially available light sensor. J. Med. Syst. 2021, 45, 46. [Google Scholar] [CrossRef] [PubMed]
- Ankers, D.; Jones, S.H. Objective assessment of circadian activity and sleep patterns in individuals at behavioural risk of hypomania. J. Clin. Psychol. 2009, 65, 1071–1086. [Google Scholar] [CrossRef]
- Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model. 2014, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Moškon, M. CosinorPy: A python package for cosinor-based rhythmometry. BMC Bioinform. 2020, 21, 485. [Google Scholar] [CrossRef] [PubMed]
- Hammad, G.; Reyt, M.; Beliy, N.; Baillet, M.; Deantoni, M.; Lesoinne, A.; Muto, V.; Schmidt, C. pyActigraphy: Open-source python package for actigraphy data visualization and analysis. PLoS Comput. Biol. 2021, 17, e1009514. [Google Scholar] [CrossRef]
- Doyle, M.M.; Murphy, T.E.; Miner, B.; Pisani, M.A.; Lusczek, E.R.; Knauert, M.P. Enhancing cosinor analysis of circadian phase markers using the gamma distribution. Sleep Med. 2022, 92, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Witting, W.; Kwa, I.H.; Eikelenboom, P.; Mirmiran, M.; Swaab, D.F. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol. Psych. 1990, 27, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Fossion, R.; Rivera, A.L.; Toledo-Roy, J.C.; Ellis, J.; Angelova, M. Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects. PLoS ONE 2017, 12, e0181762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weed, L.; Lok, R.; Chawra, D.; Zeitzer, J. The impact of missing data and imputation methods on the analysis of 24-hour activity patterns. Clocks Sleep 2022, 4, 497–507. [Google Scholar] [CrossRef]
- Blume, C.; Santhi, N.; Schabus, M. ‘nparACT’ package for R: A free software tool for the non-parametric analysis of actigraphy data. MethodsX 2016, 3, 430–435. [Google Scholar] [CrossRef]
- Abhilash, L.; Sheeba, V. RhythmicAlly: Your R and Shiny-Based Open-Source Ally for the analysis of biological rhythms. J. Biol. Rhythm. 2019, 34, 551–561. [Google Scholar] [CrossRef]
- Lee Gierke, C.; Cornelissen, G. Chronomics analysis toolkit (CATkit). Biol. Rhythm Res. 2016, 47, 163–181. [Google Scholar] [CrossRef]
- Oike, H.; Ogawa, Y.; Oishi, K. Simple and quick visualization of periodical data using Microsoft Excel. Methods Protoc. 2019, 2, 81. [Google Scholar] [CrossRef]
N | Device (and Manufacturer) | Digital Display +/−; Mounting | Dimensions and Weight | Battery Recharge (+/−), Type. Low Battery Warning from Unit | Runtime. 1 Delayed Start +/− | Light Bands; Lux Range 2 | Other Sensors/Features | Communi-cation with PC | Software Name, Features. Operational System |
---|---|---|---|---|---|---|---|---|---|
1 | ActTrust, ActTrust 2 (Condor, São Paulo, Brazil) | −, + 3 wrist band | 47 × 31 × 12 mm 38 g (with band), 39 × 30 × 12 mm 35 g (with band) 2 | (+) Lipo charged via dock. Audible warning | 90 days – | R,G,B, IR, total, plus UV 3; 0.02–17,000 | Skin temperature External temperature Event marker with audible feedback Watch (time) 3 | Dock → USB cable | ActStudio: circadian and sleep scoring. Windows, OS |
2 | Kronowise KW6 (Kronohealth SL, Murcia, Spain) | − wrist band | 52 × 40 × 12 mm 64 g (with band) | (+) Lipo charged via USB cable to PC. Charge 4-LED indicator, work status indicator | 21 (for 30 s storing) + | B, IR, photopic; 0.01–43,000 | Skin temperature Body position Event marker | USB cable | Kronoware: circadian and sleep scoring Raw data accessible. Windows |
3–4 | Actiwatch 2 (Philips Respironics, Bend, USA) | − wrist band | 43 × 23 × 10 mm 16 g (with band) | (+) Lipo charged via dock for 12–24 h. No warning | 30 days + | photopic; range: NIA | Event marker /accelerometer is uniaxial/ | Dock → USB cable | Actiware: circadian and sleep scoring. Windows |
Actiwatch spectrum Plus (or PRO) (–//–) | + wrist band | 48 × 37 × 15 mm 31 g (with band) | (+) Lipo CLB2032 charged via USB cable to PC. Battery status icon | 60 (or 50 3) days + | R,G,B, photopic; range: NIA | Event marker with visual feedback Audible off-wrist reminder 4 subjective scores daily with alarm reminder 3 Watch (date, time) /accelerometer is uniaxial/ | USB cable | ||
5 | MotionWatch 8 (CamnTech, Fenstanton, UK) | − wrist band | 36 × 28 × 9 mm 9 g (without band) | (–) CR2032. Work status red LED | 90–180 days + | photopic; 0–64,000 | Event marker with visual feedback | USB cable | MotionWare: circadian and sleep scoring. Windows |
6 | Motionlogger Micro Watch 4 (Ambulatory Monitoring, Ardsley, USA) | + wrist band | 48 × 36 × 10 mm 37 g (with band) | (−) CR2430. Work status indicator | 30 days + | photopic; 0–1200 | External temperature Event marking with visual feedback Off-wrist detection Watch (time, date) | Wireless via USB IrDA adapter | Operational software: to initialize and download data. Action4: circadian scoring. ActionW-2: sleep scoring. Windows |
7 | GENEActiv (Activinsights Ltd., Kimbolton, UK) | − wrist band, other locations | 43 × 40 × 13 mm 16 g (without band) | (+) Lipo charged via 4-up charger cradle. No warning | 30 days (for 20 s storing) + | photopic; 0–3000 | External temperature Event marker Charge LED indicator (works when not in record mode) | Dock → USB cable | GENEActiv: graphing, sleep scoring. Windows |
8 | ActiGraph wGT3X-BT (ActiGraph, Pensacola, USA) | − wrist strap, other locations (belt not supplied) | 46 × 33 × 15 mm 19 g (without strap) | (+) Lipo charged via USB cable to PC or multiple charger (optional). LED indicator will flash red 2 times | 25 days + | photopic; 0–1500 | Wear time sensor Body position, steps (for waist- or thigh-worn device) Heart rate (optional, via Bluetooth connection with Polar belt monitor) | USB cable, Bluetooth LE | Actilife: sleep scoring, row data analysis in the in-built template. Windows, OS. Android, iOS (do not work with Actilife). |
9 | Daqtometer 2.4 (Daqtix, Oetzen, Germany) | − wrist strap | 44 × 40 × 12 mm 21 g (without strap) | (−) CR2032. Work status red LED | 1 year − | photopic; (no conversion to lux) | /accelerometer is biaxial/ | Wireless via USB IrDA adapter | Operational software. Export data in row units. Windows, Linux |
10 | ActiTrac (IM Systems, Baltimore, USA) | − wrist strap, other locations | 55 × 37 × 12 mm 23 g | (+) Lipo charged via USB cable to PC No warning | 44 days + | photopic; 800–8000 | Event marker /accelerometer is biaxial/ | USB cable | ActoScore: data graphing and analysis. Windows |
11 | Axivity AX3 or AX6 (Axivity Ltd., Newcastle upon Tyne, UK) | − sleeve band (optional) | 35 × 24 × 9 mm, 11 g | (+) Lipo charged via USB cable to PC or USB hub. LED brief flash before and at stopping | >30 days (for 0.08 s storing (12.5 Hz)) | photopic; (3–1000 lux at sensor level) 6 | External temperature Body position 3 /accelerometer is 6-axis 3/ | USB cable | OmGUI: operational software, view and export row units data. Windows |
12–13 | Daysimeter-S (Lighting Research Center, Troy, USA) | − ear headset | 75 × 5 × 5 mm (sensors unit) +72 × 48 × 11 mm (control unit), weight: NIA | (−) CR2032. No warning | ≥7 days − | R, G, B, total; IR; 0.2–65,000 | /not waterproof/ | USB cable | Two software: operational and data decoding. Python (works on Windows, OS, Linux) |
Daysimeter-D (–//–) | − different locations 5 | 20 mm in diameter, weight: NIA | (−) CR2032, non-replaceable (epoxy encapsulated). No warning | 11 days − | –//– | Dock (optical sensing) → USB cable | |||
14 | LightWatcher (Object-Tracker, Perchtoldsdorf, Austria) | − eyeglasses, headset, badge, necklace | 50 × 20 × 10 mm 12 g (without mount) | (+) Lipo charged via USB cable to PC. 1-sec long sound after recording stopped | 6 weeks + | IR, R, G, B, UV, photopic; 0–100,000 | Event marker with LED & sound feedback External temperature Barometric pressure Relative humidity | USB cable | OT-Sensor: data graphing. Windows |
15 | MSR145 (Electronics GmbH, Seuzach, Switzerland) | − velcro strap (by request) | 53 × 27 × 16 mm (at minimum) ~20 g (without band) | (+) Lipo charged via USB cable to PC or 7-up USB hub (optional) Charge LED indicator | 8 weeks + | photopic; 0–65,000 | External temperature, relative humidity, air pressure, fluid pressure /the set may be configured individually by the manufacturer/ | USB cable 7 | MSR Dashboard: operational software. MSR ReportGenerator: a compact report, graphing. Windows |
16–17 | MetaMotionC MMC (Mbientlab, San Francisco, USA) | − sleeve band, clip, adhesion | 27 mm in diameter ×8 mm, 8 g | (−) CR2032 Charge status in app | <2 days (by memory) 1–2 weeks (by battery) − | photopic; 0.01–64,000 | External temperature Barometer, Pressure, Altimeter Magnetometer BLE for daily data transfer /accelerometer is 6-axis/ | Bluetooth LE to smartphone, hub, tablet, computer | MetaBase: operational software. No software for raw data analysis. iPAD, iPhone, Android, Windows |
MetaMotionS MMS (–//–) | –//– | 36 × 27 × 10 mm 9 g | (+) Lipo charged via USB cable to PC Charge status in app | <2 days (by memory) 3–5 weeks (by battery) − | –//– | –//– | –//– |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilenko, K.V.; Stefani, O.; Voronin, K.A.; Mezhakova, M.S.; Petrov, I.M.; Borisenkov, M.F.; Markov, A.A.; Gubin, D.G. Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review. Appl. Sci. 2022, 12, 11794. https://doi.org/10.3390/app122211794
Danilenko KV, Stefani O, Voronin KA, Mezhakova MS, Petrov IM, Borisenkov MF, Markov AA, Gubin DG. Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review. Applied Sciences. 2022; 12(22):11794. https://doi.org/10.3390/app122211794
Chicago/Turabian StyleDanilenko, Konstantin V., Oliver Stefani, Kirill A. Voronin, Marina S. Mezhakova, Ivan M. Petrov, Mikhail F. Borisenkov, Aleksandr A. Markov, and Denis G. Gubin. 2022. "Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review" Applied Sciences 12, no. 22: 11794. https://doi.org/10.3390/app122211794
APA StyleDanilenko, K. V., Stefani, O., Voronin, K. A., Mezhakova, M. S., Petrov, I. M., Borisenkov, M. F., Markov, A. A., & Gubin, D. G. (2022). Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review. Applied Sciences, 12(22), 11794. https://doi.org/10.3390/app122211794