Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare
Abstract
:1. Introduction
- We design and propose a privacy-aware framework for the prediction of heart disease in healthcare using an improved federated learning algorithm for cloud and user sites.
- M-ABC optimizer is proposed at the client end for the optimal feature selection of heart disease data. This optimizer enables improved accuracy of prediction and fewer classification errors.
- Federated matched averaging (FedMA)-based algorithm is explored for constructing a privacy-aware framework for a global cloud model.
- We validated and tested the proposed framework with a real-world heart disease dataset. Evaluation of the performance of the proposed framework in terms of prediction accuracy, classification error, and communication efficiency is performed with state-of-the-art federated learning algorithms.
2. Literature Review
3. Materials and Methods
3.1. Dataset Description
3.2. Optimal Solution Selection Using M-ABC Algorithm for IoMT Clients
Algorithm 1: Working of Optimizer M-ABC Algorithm |
1: IoMT sites initialization phase using Equation (1) 2: Do Repeat 3: Employed bees for new solution using Equation (2) 4: Onlooker bees candidate solution using Equations (3) and (4) 5: Phase of Scout bees’ candidate solution using Equation (5) 6: Memorize the best solution you came up with 7: until maximum number of cycles reached |
3.2.1. Initialization Phase
3.2.2. Solution Search by Employed Bee
3.2.3. Candidate Solution by Onlooker Bee
3.2.4. Scout Bee Phase
3.2.5. Data Collection Using IoMT Clients
3.3. Design of Proposed Framework
Algorithm 2: Learning method of proposed framework for healthcare. The K number of users is listed as k, local minibatch size is shown by β, learning rate is represented by η, and local epochs are represented using E. |
Input: Data from various healthcare users {U1, U2, - - -, UN} Output: Privacy-aware personalized model for each IoMT user k // Processing at the global cloud end: 1: Initialize a global cloud model o 2: for every round r = 1, 2, . . . do (i) r ← 2190 maximum of (K, 1) (ii) St ← (r is random number of clients) 3: for every client k ϵ Sr do in parallel (i) ← BBP-MAP ({k, Cn, r})//call BBP-MAE to solve Equation (6) (ii) k ← (iii) r+1 ← k//permutate the next weights 4: Distribute k among all users 5: Repeat above steps with every evolving user data // Working at Client End (k): 1: for each client in k (i) β ← (fragment each Pk to groups of β size) (ii) Compute candidate solution Cn using M-ABC Optimizer using Equations (2), (3), and (5) 2: for every local round i = 1 . . . E do (i) for group b ϵ β do (a) ←– ηl () 3: return to the cloud |
- Initial Phase: Initially, all the connected IoMT healthcare sites obtain an initial global model o from the cloud and are initiated with vector Xni.
- Working at Cloud End: To retrieve the weights k of the federated model, the cloud first collects only the weights from the clients and performs matched averaging. The clients then train their local model using their local data while the matching federated is kept frozen once the cloud broadcasts these weights to them. Then, we repeat this process up until the final round of communication.
- Working at IoMT Client Sites: After data collection using IoMT devices, the collected data is fragmented into local minibatch of size β. The candidate optimal solution Cn for each β is computed using the M-ABC optimizer and the weights of the local computed solution from every IoMT client site are returned to the global cloud.
4. Experimental Evaluation and Results
4.1. Experimental Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the Internet of Medical Things era: A systematic review of current and future trends. Comput. Commun. 2020, 150, 644–660. [Google Scholar] [CrossRef]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Watkins, D.A.; Beaton, A.Z.; Carapetis, J.R.; Karthikeyan, G.; Mayosi, B.M.; Wyber, R.; Yacoub, M.H.; Zühlke, L.J. Rheumatic heart disease worldwide: JACC scientific expert panel. J. Am. Coll. Cardiol. 2018, 72, 1397–1416. [Google Scholar] [CrossRef]
- Mohan, S.; Thirumalai, C.; Srivastava, G. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. IEEE Access 2019, 7, 81542–81554. [Google Scholar] [CrossRef]
- Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [Google Scholar] [CrossRef]
- Voigt, P.; Von dem Bussche, A. Scope of application of the GDPR. In The EU General Data Protection Regulation; Springer: Cham, Switzerland, 2017; pp. 9–30. [Google Scholar]
- Wagner, J. China’s Cybersecurity Law: What you need to know. The Diplomat, 1 June 2017. Available online: https://thediplomat.com/2017/06/chinas-cybersecurity-law-what-you-need-to-know/ (accessed on 20 July 2022).
- De la Torre, L. A Guide to the California Consumer Privacy Act of 2018. SSRN. 2018. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3275571 (accessed on 21 July 2022).
- McMahan, B.; Ramage, D. Federated Learning: Collaborative Machine Learning without Centralized Training Data. Google AI Blog. 2017. Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 2 August 2022).
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Aguera y Arcas, B. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Xiong, S.; Jayasena, K.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowl.-Based Syst. 2019, 169, 39–52. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mousavi, S.K.; Ghaffari, A.; Besharat, S.; Afshari, H. Improving the security of internet of things using cryptographic algorithms: A case of smart irrigation systems. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 2033–2051. [Google Scholar] [CrossRef]
- Mousavi, S.K.; Ghaffari, A.; Besharat, S.; Afshari, H. Security of internet of things based on cryptographic algorithms: A survey. Wirel. Netw. 2021, 27, 1515–1555. [Google Scholar] [CrossRef]
- Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Access 2020, 8, 140699–140725. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.A.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2021, 8, 5476–5497. [Google Scholar] [CrossRef]
- Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated Electronic Health Records. Int. J. Med. Inform. 2018, 112, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning (DIDL), Rennes, France, 10 December 2018; ACM: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020, arXiv:2002.06440. [Google Scholar]
- Nguyen, H.T.; Sehwag, V.; Hosseinalipour, S.; Brinton, C.G.; Chiang, M.; Poor, H.V. Fast-Convergent Federated Learning. IEEE J. Sel. Areas Commun. 2021, 39, 201–218. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, M.; Cai, X.; Jia, Z. Fast-convergent federated learning with class-weighted aggregation. J. Syst. Arch. 2021, 117, 102125. [Google Scholar] [CrossRef]
- Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573. [Google Scholar] [CrossRef]
- Cheng, W.; Ou, W.; Yin, X.; Yan, W.; Liu, D.; Liu, C. A Privacy-Protection Model for Patients. Secur. Commun. Netw. 2020, 2020, 6647562. [Google Scholar] [CrossRef]
- Fang, L.; Liu, X.; Su, X.; Ye, J.; Dobson, S.; Hui, P.; Tarkoma, S. Bayesian Inference Federated Learning for Heart Rate Prediction. In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Virtual Event, 19 November 2020; Springer: Cham, Switzerland, 2020; pp. 116–130. [Google Scholar]
- Babar, M.; Khan, M.S.; Din, A.; Ali, F.; Habib, U.; Kwak, K.S. Intelligent Computation Offloading for IoT Applications in Scalable Edge Computing Using Artificial Bee Colony Optimization. Complexity 2021, 2021, 5563531. [Google Scholar] [CrossRef]
- Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [Google Scholar] [CrossRef]
- Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Haq, N.U.; Umar, A.I.; Shuja, J.; Ahmad, Z.; Ben Dhaou, I.; Alsharekh, M.F. LiMPO: Lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput. 2022, 1–19. [Google Scholar] [CrossRef]
- Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Umar, A.I.; Khan, M.A.; Jhanjhi, N.Z.; Shorfuzzaman, M.; Masud, M. COME-UP: Computation Offloading in Mobile Edge Computing with LSTM Based User Direction Prediction. Appl. Sci. 2022, 12, 3312. [Google Scholar] [CrossRef]
- Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Ahmad, Z.; Umar, A.I.; Shuja, J.; Alanazi, E.; Alasmary, W. Mobility-aware computational offloading in mobile edge networks: A survey. Clust. Comput. 2021, 24, 2735–2756. [Google Scholar] [CrossRef]
- Shuja, J.; Alanazi, E.; Alasmary, W.; Alashaikh, A. COVID-19 open source data sets: A comprehensive survey. Appl. Intell. 2021, 51, 1296–1325. [Google Scholar] [CrossRef]
- Manimurugan, S.; Almutairi, S.; Aborokbah, M.M.; Narmatha, C.; Ganesan, S.; Chilamkurti, N.; Alzaheb, R.A.; Almoamari, H. Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence. Sensors 2022, 22, 476. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, J.; Zhang, K.; Wu, Y.; Yang, T. A Stable AI-Based Binary and Multiple Class Heart Disease Prediction Model for IoMT. IEEE Trans. Ind. Inform. 2022, 18, 2032–2040. [Google Scholar] [CrossRef]
- Khan, M.A.; Algarni, F. A Healthcare Monitoring System for the Diagnosis of Heart Disease in the IoMT Cloud Envi-ronment Using MSSO-ANFIS. IEEE Access 2020, 8, 122259–122269. [Google Scholar] [CrossRef]
- Yaqoob, M.M.; Khurshid, W.; Liu, L.; Arif, S.Z.; Khan, I.A.; Khalid, O.; Nawaz, R. Adaptive Multi-Cost Routing Protocol to Enhance Lifetime for Wireless Body Area Network. Comput. Mater. Contin. 2022, 72, 1089–1103. [Google Scholar] [CrossRef]
- Li, C.; Hu, X.; Zhang, L. The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci. 2017, 112, 2328–2334. [Google Scholar] [CrossRef]
- Khan, M.A. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier. IEEE Access 2020, 8, 34717–34727. [Google Scholar] [CrossRef]
- Sarmah, S.S. An Efficient IoT-Based Patient Monitoring and Heart Disease Prediction System Using Deep Learning Modified Neural Network. IEEE Access 2020, 8, 135784–135797. [Google Scholar] [CrossRef]
- Makhadmeh, Z.A.; Tolba, A. Utilizing IoT wearable medical device for heart disease prediction using higher order Boltzmann model: A classification approach. Measurement 2019, 147, 106815. [Google Scholar] [CrossRef]
- Ganesan, M.; Sivakumar, N. IoT based heart disease prediction and diagnosis model for healthcare using machine learning models. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Albahri, A.S.; Zaidan, A.A.; Zaidan, B.B.; Alamoodi, A.H.; Shareef, A.H.; Alwan, J.K.; Hamid, R.A.; Aljbory, M.T.; Jasim, A.N.; Baqer, M.J.; et al. Development of IoT-based mhealth framework for various cases of heart disease patients. Health Technol. 2021, 11, 1013–1033. [Google Scholar] [CrossRef]
- Gupta, A.; Yadav, S.; Shahid, S.; Venkanna, U. HeartCare: IoT Based Heart Disease Prediction System. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; pp. 88–93. [Google Scholar]
- Jabeen, F.; Maqsood, M.; Ghazanfar, M.A.; Aadil, F.; Khan, S.; Khan, M.F.; Mehmood, I. An IoT based efficient hybrid recommender system for cardiovascular disease. Peer-to-Peer Netw. Appl. 2019, 12, 1263–1276. [Google Scholar] [CrossRef]
- Ashri, S.E.A.; El-Gayar, M.M.; El-Daydamony, E.M. HDPF: Heart Disease Prediction Framework Based on Hybrid Classifiers and Genetic Algorithm. IEEE Access 2021, 9, 146797–146809. [Google Scholar] [CrossRef]
- Shin, S.; Kang, M.; Zhang, G.; Jung, J.; Kim, Y.T. Lightweight Ensemble Network for Detecting Heart Disease Using ECG Signals. Appl. Sci. 2022, 12, 3291. [Google Scholar] [CrossRef]
- Ashfaq, Z.; Mumtaz, R.; Rafay, A.; Zaidi, S.M.H.; Saleem, H.; Mumtaz, S.; Shahid, A.; De Poorter, E.; Moerman, I. Embedded AI-Based Digi-Healthcare. Appl. Sci. 2022, 12, 519. [Google Scholar] [CrossRef]
- Panniem, A.; Puphasuk, P. A Modified Artificial Bee Colony Algorithm with Firefly Algorithm Strategy for Continuous Optimization Problems. J. Appl. Math. 2018, 2018, 1237823. [Google Scholar] [CrossRef]
Used Symbol | Description |
---|---|
Xni | Initialization vector for client sites |
Cnie | Candidate solution by employed bee |
Xpi | Random local solution |
Fn | Fitness function |
Cnio | Onlooker bee’s candidate solution |
Cnis | Candidate solution of scout bee |
wjl | lth neuron studied on the dataset j |
θi | Mean Gaussian |
c (wjl, θi) | Similarity function |
K | Number of client sites listed as k |
Β | Size of local minibatch |
η | Learning rate |
E | Number of local epochs |
o | Initial global cloud model |
k | Model of kth client |
S# | Risk Name | Description | Encoded Values |
---|---|---|---|
1 | Age | Age in years | >79 = 2, 61–79 = 1, 51–60 = 0, 35–50 = −1, <35 = −2 |
2 | Sex | Female and Male | Female = 0, Male = 1 |
3 | Blood pressure | In mmHg | Above 139 mmHg = High = 1 120–139 mmHg = Normal = 0 Below 120 mmHg = Low = −1 |
4 | Serum cholesterol | In mg/dL | >240 mg/dL = High = 1 200–239 mg/dL = Normal = 0 <200 mg/dL = Low = −1 |
5 | Hereditary | Family members diagnosed with heart disease | Yes = 1 No = 0 |
6 | Alcohol | Yes or No | Yes = 1 No = 0 |
7 | Diabetes | Yes or No | Yes = 1 No = 0 |
8 | Resting electrocardiographic | Normal, ST T, or Hypertrophy | Hypertrophy = 2 ST T = 1 Normal = 0 |
9 | Angina induced by exercise | Yes or No | Yes = 1 No = 0 |
10 | Fasting blood sugar | >120 mg/dL | True = 1 False = 0 |
11 | Status of heart (thallium scan) | Reversible defect, Normal, fixed defect | Reversible defect = 7, Normal = 3, fixed defect = 6 |
12 | Smoke | Yes or No | Yes = 1 No = 0 |
13 | Diet | Good, Normal, Poor | Good = 1, Normal = 0, Poor = −1 |
14 | Heart Disease | Yes or No | Yes = 1, No = 0 |
Parameter | Value |
---|---|
Simulation environment | Python |
Dataset utilized | UCI Cleveland |
Number of communication rounds | 4000 |
Local epochs | {10, 20, 40, 80, 100, 120, 140, 160} |
Volume of communication (in GBs) | {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} |
Number of client nodes | 5 |
Technique | Accuracy after 4000 Rounds | # of Rounds to Reach 90% | Difference in # of Rounds |
---|---|---|---|
FedSGD | 90 | 3988 | -- |
FedAVG | 90.07 | 3871 | 2.9% |
FedMA | 90.22 | 3495 | 12.4% |
FedMA with PSO | 90.38 | 3406 | 14.6% |
FedMA with M-ABC (Proposed) | 92.89 | 3018 | 24.3% |
Technique | Accuracy | Precision | Classification Error | F-Measure | Specificity | Sensitivity |
---|---|---|---|---|---|---|
FedSGD | 90 | 89.4 | 22.5 | 85.1 | 28.2 | 83.2 |
FedAVG | 90.07 | 92.3 | 20.4 | 85.8 | 29.5 | 85.3 |
FedMA | 90.22 | 90.1 | 18.6 | 86.6 | 52.5 | 89.5 |
FedMA with PSO | 90.38 | 92.5 | 15.4 | 86.9 | 63.8 | 89.9 |
FedMA with M-ABC (Proposed) | 92.89 | 94.2 | 11.8 | 90.1 | 81.8 | 96.6 |
Optimized Feature | Accuracy Achieved (in %) |
---|---|
Age, BP, Serum Chol., Rest ECG, Thallium Scan | 89.82 |
Age, BP, Serum Chol., Hereditary, Rest ECG, Thallium Scan | 90.72 |
Age, BP, Serum Chol., Hereditary, Rest ECG, Thallium Scan, Smoke, Diet | 92.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaqoob, M.M.; Nazir, M.; Yousafzai, A.; Khan, M.A.; Shaikh, A.A.; Algarni, A.D.; Elmannai, H. Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare. Appl. Sci. 2022, 12, 12080. https://doi.org/10.3390/app122312080
Yaqoob MM, Nazir M, Yousafzai A, Khan MA, Shaikh AA, Algarni AD, Elmannai H. Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare. Applied Sciences. 2022; 12(23):12080. https://doi.org/10.3390/app122312080
Chicago/Turabian StyleYaqoob, Muhammad Mateen, Muhammad Nazir, Abdullah Yousafzai, Muhammad Amir Khan, Asad Ali Shaikh, Abeer D. Algarni, and Hela Elmannai. 2022. "Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare" Applied Sciences 12, no. 23: 12080. https://doi.org/10.3390/app122312080
APA StyleYaqoob, M. M., Nazir, M., Yousafzai, A., Khan, M. A., Shaikh, A. A., Algarni, A. D., & Elmannai, H. (2022). Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare. Applied Sciences, 12(23), 12080. https://doi.org/10.3390/app122312080