Investigation of the Static Characteristics of a Geogrid-Reinforced Embankment
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Project Overview
2.2. Monitoring Content and Layout of Measuring Points
2.3. Grid Force Monitoring
2.4. Displacement Monitoring
2.5. Model Building
2.6. Setting Material Properties
2.7. Establishing Contact Surfaces
2.8. Location Determination of Model Monitoring Points
3. Monitoring Data Analysis
3.1. Analysis of Displacement-Monitoring Data
3.2. Analysis of Geogrid Monitoring Data
3.3. Analysis of Earth Pressure-Monitoring Data
3.4. Numerical Simulation of Displacement Analysis
3.5. Numerical Simulation of Fill Stress Analysis
3.6. Numerical Simulation of Geogrid Stress Analysis
4. Conclusions
- (1)
- According to the analysis of monitoring data, the cumulative horizontal displacement of the geogrid-reinforced earth embankment decreases and the cumulative vertical displacement increases with time after construction. Additionally, the cumulative vertical displacement is greater than the cumulative horizontal displacement. Therefore, to prevent structural damage caused by excessive vertical displacement, the compactness of each layer of fill must be strictly controlled.
- (2)
- Through numerical simulation and data monitoring, it is found that the vertical pressure of the fill and the tensile stress of the geogrid are largest at the center of the structure section, and the horizontal earth pressure is largest on both sides of the structure. Therefore, in the design of similar structures in the future, the strength of the part where the structure bears the greatest force should be improved.
- (3)
- By comparing the monitored data and numerical simulation values, it is found that the tensile force of the geogrid, the horizontal pressure of the embankment fill, the vertical pressure, the horizontal displacement, and the vertical displacement are all less than the design values, indicating that the stability of the structure is good, and the geogrid inside the structure will not be broken.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Dong, Y.L.; Han, J.; Bai, X.H. A numerical Study on Stress-Strain Responses of Biaxial Geogrids Under Tension at Different Directions. In Proceedings of the Advances in Analysis, Modeling & Design, GeoFlorida 2010; American Society of Civil Engineers: Reston, VA, USA, 2010; pp. 2551–2560. [Google Scholar] [CrossRef]
- Ghafoori, N.; Sharbaf, M. Evaluation of Triaxial Geogrids for Reduction of Base Thickness in Flexible Pavements. Bitum. Mix. Pavements 2015, VI, 141. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Dessouky, S.; Tutumluer, E.; Kwon, J. Geogrid Mechanism in Low-Volume Flexible Pavements: Accelerated Testing of Full-scale Heavily Instrumented Pavement Sections. Int. J. Pavement Eng. 2011, 12, 121–135. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.Y.; Chen, Q. Evaluation of Geogrid Base Reinforcement in Flexible Pavement Using Cyclic Plate Load Testing. Int. J. Pavement Eng. 2011, 12, 275–288. [Google Scholar] [CrossRef]
- Chen, Q.; Abu-Farsakh, M.; Tao, M. Laboratory Evaluation of Geogrid Base Reinforcement and Corresponding Instrumentation Program. Geotech. Test. J. 2009, 32, 516–525. [Google Scholar] [CrossRef]
- Xu, P.; Hatami, K.; Jiang, G. Seismic Sliding Stability Analysis of Reinforced Soil Retaining Walls. Geosynth. Int. 2019, 26, 485–496. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, S.; Zhang, F.; Leshchinsky, B. Three-Dimensional Reinforced Slopes: Evaluation of Required Reinforcement Strength and Embedment Length Using Limit Analysis. Geotext. Geomembr. 2016, 44, 133–142. [Google Scholar] [CrossRef]
- Li, Z.-W.; Yang, X.-L. Stability Assessment of 3D Reinforced Soil Structures Under Steady Unsaturated Infiltration. Geotext. Geomembr. 2022, 50, 371–382. [Google Scholar] [CrossRef]
- Yang, K.H.; Nguyen, T.S.; Li, Y.H.; Leshchinsky, B. Performance and Design of Reinforced Slopes Considering Regional Hydrological Conditions. Geosynth. Int. 2019, 26, 451–473. [Google Scholar] [CrossRef]
- Duan, Y.F.; Song, L.; Liu, J.; Guo, M. Seismic Dynamic Response Analysis of Earth Embankment Reinforced with Geogrid on High Steep Slope. Sci. Technol. Highw. Transp. 2020, 37, 22–31. [Google Scholar]
- Esmaeili, M.; Naderi, B.; Neyestanaki, H.K.; Khodaverdian, A. Investigating the Effect of Geogrid on Stabilization of High Railway Embankments. Soils Found. 2018, 58, 319–332. [Google Scholar] [CrossRef]
- Tang, X.S.; Zheng, Y.R.; Wang, Y.F. Research on the Application of Double-Strength Reduction Method in Stability Analysis of Reinforced Soil Slope. Highw. Traffic Technol. 2018, 34, 14–17. [Google Scholar] [CrossRef]
- Chen, C.; Duan, Y.D.; Rui, R. Study on Strengthening Daoballast of Single and Double Geogrid Based on Pull-out Test and Discrete Element Simulation. Rock Soil Mech. 2021, 42, 954–962. [Google Scholar]
- Alotaibi, E.; Omar, M.; Shanableh, A.; Zeiada, W.; Fattah, M.Y.; Tahmaz, A.; Arab, M.G. Geogrid Bridging Over Existing Shallow Flexible PVC Buried Pipe–Experimental Study. Tunn. Undergr. Space Technol. 2021, 113, 103945. [Google Scholar] [CrossRef]
- Al-Rkaby, A.H.; Chegenizadeh, A.; Nikraz, H. Anisotropic Strength of Large-scale Geogrid-Reinforced. Sand: Experimental Study. Soils Found. 2017, 57, 557–574. [Google Scholar] [CrossRef]
- Peng, W.P.; Chen, L.W.; Liu, W.; Zhang, Q.H.; Li, C.A. Study on Strain Measurement Method of Model Geogrid. J. Hefei Univ. Technol. 2021, 44, 942–946. [Google Scholar]
- Yan, F.X.; Bai, X.H.; Dong, X.Q. Experimental Study on Friction Characteristics of Geogrid-construction Residue Interface. Rock Soil Mech. 2020, 41, 3939–3946. [Google Scholar]
- Yi, F.; Wang, Z.Y.; Du, C.B.; Zhang, Y. Experimental Study on Interaction Characteristics Between Geogratings and Fillers with Different Particle Sizes. Bull. Chin. Ceram. Soc. 2019, 38, 2557–2562. [Google Scholar]
- Liu, H.B.; Wang, L.; Wang, C.H.; Zhang, Y. Analysis of Internal Forces of Reinforced Soil Retaining Wall Reinforcement of Geosynthetics. Eng. Mech. 2017, 34, 1–11. [Google Scholar]
- Shen, H.Z. A Preliminary Study of the Progressive Failure and Stability of Slope with Strain-Softening Behavior. Rock Soil Mech. 2016, 37, 175–183. [Google Scholar] [CrossRef]
- Terzaghi, K. Soil Mechanics in Engineering Practice; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Morgenstern, N.R.; Tchalenko, J.S. Microscopic Strictures in Kaolin Subjected to Direct Shear. Geotechnique 1967, 17, 309–328. [Google Scholar] [CrossRef]
- Lade, P.V.; Wang, Q. Analysis of Shear Banding in True Triaxial Test on Sand. J. Eng. Mech. 2001, 127, 762–766. [Google Scholar] [CrossRef]
- Suits, L.D.; Sheahan, T.; Wanatowski, D.; Chu, J. Stress-strain Behavior of a Granular Fill Measured by a New Plane Strain Apparatus. Geotech. Test. J. 2006, 29, 149–157. [Google Scholar] [CrossRef]
- Mirzaeifar, H.; Hatami, K.; Abdi, M.R. Pullout Testing and Particle Image Velocimetry (PIV) Analysis of Geogrid Reinforcement Embedded in Granular Drainage Layers. Geotext. Geomembr. 2022, 50, 1083–1109. [Google Scholar] [CrossRef]
- Lo, S.C.R.; Xu, D.W. A Strainbased Design Method For the Collapse Limit State of Reinforced Soil Walls and Slopes. Can. Geotech. J. 1992, 29, 832–842. [Google Scholar] [CrossRef]
- Shahgholi, M.; Fakher, A.; Jones, C.J.F.P.; Lam, J.; Li, K.S. Horizontal slice method of analysis. Géotechnique 2001, 52, 881–886. [Google Scholar] [CrossRef]
- Guler, E.; Enunlu, A.K. Investigation of Dynamic Behavior of Geosynthetic Reinforced Soil Retaining Structures Under Earthquake Loads. Bull. Earthq. Eng. 2009, 7, 737–777. [Google Scholar] [CrossRef]
- Magdii, M.E.E.; Richard, B.J. Experiment Design Instrumentation and Interpretation of Reinforced Soil Wall Response of Shaking Table. Phys. Model. Goetech. 2004, 4, 13–32. Available online: www.academia.edu/30942657 (accessed on 23 October 2022).
- Leshchinsky, D. Design Dilemma: Use Peak or Residual Strength of Soil. Geotext. Geomembr. 2001, 19, 111–125. [Google Scholar] [CrossRef]
- Liu, J. Experimental Study on Mechanical Properties and Reinforcement Mechanism of Geogrid-Reinforced Gravelly Soil. Hefei Univ. Technol. 2018, 6, 1–191. [Google Scholar]
- Coates, P.D.; Ward, I.M. The Plastic Deformation Behaviour of Linear Polyethylene and Polyoxymethylene. J. Mater. Sci. 1978, 13, 1957–1970. [Google Scholar] [CrossRef]
- Coates, P.D.; Ward, I.M. Neck Profiles in Drawn Linear Polyethylene. J. Mater. Sci. 1978, 15, 2897–2914. [Google Scholar] [CrossRef]
- Huang, D.L.; Tang, A.P.; Wang, Z.G. Analysis of Pipe-Soil Interactions Using Goodman Contact Element Under Seismic Action. Soil Dyn. Earthq. Eng. 2020, 139, 1062–1090. [Google Scholar] [CrossRef]
- Tran, V.D.H.; Meguid, M.A.; Chouinard, L.E. A Finite–Discrete Element Framework for the 3D Modeling of Geogrid–Soil Interaction Under Pullout Loading Conditions. Geotext. Geomembr. 2013, 37, 1–9. [Google Scholar] [CrossRef]
- Lalima, B.; Sowmiya, C.; Sujit, K. Application of Geocell Reinforced Coal Mine Overburden Waste as Subballast in Railway Tracks on Weak Subgrade. Constr. Build. Mater. 2020, 265, 120774. [Google Scholar] [CrossRef]
The Name of the Material | Modulus of Elasticity (kPa) | Poisson’s Ratio | Bulk Density (kN·m−3) | Cohesion (kPa) | Friction Angle (°) | Type | The Constitutive Relation |
---|---|---|---|---|---|---|---|
Backfill soil layer | 1.2 × 103 | 0.35 | 18 | 5 | 20 | 2D | Mohr–Coulomb |
Bearing layer | 5 × 105 | 0.32 | 24 | 36 | 36 | 2D | Mohr–Coulomb |
Natural soil | 4 × 105 | 0.30 | 24 | - | - | 2D | Mohr–Coulomb |
Geogrid 170 | 5.7 × 107 | 0.33 | 24 | - | - | 1D | Elastic |
Geogrid 130 | 4.3 × 107 | 0.33 | 24 | - | - | 1D | Elastic |
Geogrid 90 | 3 × 107 | 0.33 | 24 | - | - | 1D | Elastic |
The Name of the Material | Normal Stiffness Modulus (kPa) | Tangential Stiffness Modulus (kN/m2) | Cohesion (kPa) | Friction Angle (°) | Type | Thickness (m) |
---|---|---|---|---|---|---|
Geogrid 170 | - | - | - | - | 1D | 5 × 10−3 |
Geogrid 130 | - | - | - | - | 1D | 5 × 10−3 |
Geogrid 90 | - | - | - | - | 1D | 5 × 10−3 |
Interface contact | 1 × 109 | 3 × 10−3 | 15 | 30 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Cheng, J.; Liu, J. Investigation of the Static Characteristics of a Geogrid-Reinforced Embankment. Appl. Sci. 2022, 12, 12115. https://doi.org/10.3390/app122312115
Duan Y, Cheng J, Liu J. Investigation of the Static Characteristics of a Geogrid-Reinforced Embankment. Applied Sciences. 2022; 12(23):12115. https://doi.org/10.3390/app122312115
Chicago/Turabian StyleDuan, Yanfu, Jianjun Cheng, and Jie Liu. 2022. "Investigation of the Static Characteristics of a Geogrid-Reinforced Embankment" Applied Sciences 12, no. 23: 12115. https://doi.org/10.3390/app122312115
APA StyleDuan, Y., Cheng, J., & Liu, J. (2022). Investigation of the Static Characteristics of a Geogrid-Reinforced Embankment. Applied Sciences, 12(23), 12115. https://doi.org/10.3390/app122312115