The Effect of In Vitro Coinoculation on the Physiological Parameters of White Lupine Plants (Lupinus albus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bradyrhizobium Bacteria from Commercial Preparations
2.2. Interactions between Symbiotic Bacteria (Bradyrhizobium sp.) and Endophytes (Pseudomonas fluorescens or Bacillus subtilis)
- Bradyrhizobium sp. (isolated from the Nitragina preparation) on Pseudomonas fluorescens;
- Bradyrhizobium sp. (isolated from the Nitragina preparation) on Bacillus subtilis;
- Pseudomonas fluorescens on Bradyrhizobium sp. (isolated from the Nitragina preparation);
- Bacillus subtilis on Bradyrhizobium sp. (isolated from the Nitragina preparation);
- Bradyrhizobium sp. (isolated from the Nitroflora preparation) on Pseudomonas fluorescens;
- Bradyrhizobium sp. (isolated from the Nitroflora preparation) on Bacillus subtilis;
- Pseudomonas fluorescens on Bradyrhizobium sp. (isolated from the Nitroflora preparation);
- Bacillus subtilis on Bradyrhizobium sp. (isolated from the Nitroflora preparation).
2.3. Influence of Coinoculation on the Weight of Belowground and Aboveground Parts of Plants
- Uninoculated plant (control variant);
- Plant inoculated with Bradyrhizobium sp. bacteria (isolated from the Nitragina preparation);
- Plant inoculated with Bradyrhizobium sp. bacteria (isolated from the Nitroflora preparation);
- Plant inoculated with Bacillus subtilis bacteria;
- Plant inoculated with Pseudomonas fluorescens bacteria;
- Plant coinoculated with Bradyrhizobium sp. (isolated from the Nitragina preparation) and Bacillus subtilis bacteria;
- Plant coinoculated with Bradyrhizobium sp. (isolated from the Nitragina preparation) and Pseudomonas fluorescens bacteria;
- Plant coinoculated with Bradyrhizobium sp. (isolated from the Nitroflora preparation) and Bacillus subtilis bacteria;
- Plant coinoculated with Bradyrhizobium sp. (isolated from the Nitroflora preparation) and Pseudomonas fluorescens bacteria.
2.4. Count of Endophytic Bacteria Colonising Root
2.5. Assessment of Diazotrophy Parameters
2.6. Statistical Analysis
3. Results
3.1. Interactions between Symbiotic Bacteria (Bradyrhizobium sp.) and Endophytes (Pseudomonas fluorescens or Bacillus subtilis)
3.2. Influence of Coinoculation on Weight of Belowground and Aboveground of Plants and Degree of Root Colonisation by Endophytic Bacteria—Laboratory Test
3.3. Count of Endophytic Bacteria Colonising Roots
3.4. Assessment of Diazotrophy Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husna; Tuheteru, F.D.; Arif, A. The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia. J. For. Res. 2021, 32, 675–682. [Google Scholar] [CrossRef]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From Saprophytes to Endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Zahran, H. Legume-Microbe Interactions under Stressed Environments. In Microbes for Legume Improvement; Springer: Berlin/Heidelberg, Germany, 2017; pp. 301–339. [Google Scholar] [CrossRef]
- Barriuso, J.; Ramos Solano, B.; Gutiérrez Mañero, F.J. Protection against Pathogen and Salt Stress by Four Plant Growth-Promoting Rhizobacteria Isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 2008, 98, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saharan, B.S.; Nehra, V. Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sci. Med. Res. 2011, 2011, 21. [Google Scholar]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Arshad, M.; Frankenberger, W.T. Plant Growth Promoting Rhizobacteria: Applications and Perspectives in Agriculture. Adv. Agron. 2003, 81, 97–168. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
- Mhatre, P.H.; Karthik, C.; Kadirvelu, K.; Divya, K.L.; Venkatasalam, E.P.; Srinivasan, S.; Ramkumar, G.; Saranya, C.; Shanmuganathan, R. Plant Growth Promoting Rhizobacteria (PGPR): A Potential Alternative Tool for Nematodes Bio-Control. Biocatal. Agric. Biotechnol. 2019, 17, 119–128. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Co-Inoculation of Soybeans and Common Beans with Rhizobia and Azospirilla: Strategies to Improve Sustainability. Biol. Fertil. Soils 2013, 49, 791–801. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The Role of Mycorrhizae and Plant Growth Promoting Rhizobacteria (PGPR) in Improving Crop Productivity under Stressful Environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef]
- Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.-H.; Huang, E.; Huang, C.-C. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int. J. Mol. Sci. 2021, 22, 3154. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, G.; Sing, F.; Desai, A.J.; Archana, G. Enhanced Growth and Nodulation of Pigeon Pea by Co-Inoculation of Bacillus Strains with Rhizobium spp. Bioresour. Technol. 2008, 99, 4544–4550. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Ratajczak, K.; Głuchowska, K.; Waraczewska, Z.; Budka, A. An Assessment of the Influence of Co-Inoculation with Endophytic Bacteria and Rhizobia, and the Influence of PRP SOL and PRP EBV Fertilisers on the Microbial Parameters of Soil and Nitrogenase Activity in Yellow Lupine (Lupinus luteus L.) Cultivation. Pol. J. Environ. Stud. 2018, 27, 2687–2702. [Google Scholar] [CrossRef] [PubMed]
- Prusiński, J. White lupine (Lupinus albus L.)—History of domestication and biological progress. Zesz. Probl. Postępów Nauk. Rol. 2015, 580, 105–119. [Google Scholar]
- Rodina, A.G. Microbiological Methods of Water Testing; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawy, Poland, 1968; p. 254. [Google Scholar]
- Burbianka, M.; Pliszka, A. Microbiological Testing of Food Products; Państwowy Zakład Wydawnictw Lekarskich: Warszawy, Poland, 1963; p. 337. [Google Scholar]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Saha, R.; Donofrio, R.S.; Goeres, D.M.; Bagley, S.T. Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization. Appl. Microbiol. Biotechnol. 2012, 94, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Ryu, J.; Kim, S.W. Microbial consortia including methanotrophs: Some benefits of living together. J. Microbiol. 2019, 57, 939–952. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bassler, B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef]
- Santoyo, G.; Guzmán-Guzmán, P.; Parra-Cota, F.I.; Santos-Villalobos, S.D.L.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Plant Growth Stimulation by Microbial Consortia. Agronomy 2021, 11, 219. [Google Scholar] [CrossRef]
- Ng, W.L.; Bassler, B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 2009, 43, 197–222. [Google Scholar] [CrossRef] [Green Version]
- Niewiadomska, A.; Swędrzyńska, D. Effect of the Co-Inoculation of Lucerne (Medicago sativa L.) with Sinorhizobium Meliloti and Herbaspirillum Frisingense in Relation to the Interactions between Bacterial Strain. Arch. Environ. Prot. 2011, 37, 37–48. [Google Scholar]
- Yousef, N.M. Capability of Plant Growth-Promoting Rhizobacteria (PGPR) for Producing Indole Acetic Acid (IAA) under Extreme Conditions. Eur. J. Biol. Res. 2018, 8, 174–182. [Google Scholar]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A Universal Cell Factory for Industry, Agriculture, Biomaterials and Medicine. Microb. Cell Fact. 2020, 19, 173. [Google Scholar] [CrossRef]
- Martins, A.; Kimura, O.; Goi, S.; Baldini, J.; Goi, R.S.; Baldani, J.I. Effect of the co-inoculation of plant-growth promoting rhizobacteria and rhizobia on development of common bean plants (Phaseolus vulgaris L.). Floresta Ambient. 2012, 11, 33–39. [Google Scholar]
- Niewiadomska, A. Assessment of the Impact of PRP SOL Fertiliser and Coinoculation on the Process Diazotrophy, Biological and Chemical Properties of Soil and Crop Condition under Clover and Alfalfa Cultivation; Pub. University of Life Sciences in Poznan: Poznan, Poland, 2013. [Google Scholar]
- Upadhyay, A.; Srivastava, S. Characterization of a New Isolate of Pseudomonas fluorescens Strain Psd as a Potential Biocontrol Agent. Lett. Appl. Microbiol. 2008, 47, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C.; Felix, G. Plants and Animals: A Different Taste for Microbes? Curr. Opin. Plant Biol. 2005, 8, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Marek-Kozaczuk, M.; Kopcińska, J.; Łotocka, B.; Golinowski, W.; Skorupska, A. Infection of Clover by Plant Growth Promoting Pseudomonas fluorescens Strain 267 and Rhizobium leguminosarum bv. trifolii Studied by MTn5-GusA. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2000, 78, 1–11. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Asis, C.A.; Akao, S. Production of Growth-Promoting Substances and High Colonization Ability of Rhizobacteria Enhance the Nitrogen Fixation of Soybean When Coinoculated with Bradyrhizobium japonicum. Biol. Fertil. Soils 2001, 34, 427–432. [Google Scholar] [CrossRef]
- Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sust. Food Syst. 2021, 4, 618230. [Google Scholar] [CrossRef]
- Tilak, K.V.B.R.; Ranganayaki, N.; Manoharachari, C. Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur. J. Soil Sci. 2006, 57, 67–71. [Google Scholar] [CrossRef]
- Wani, P.; Khan, M.; Zaidi, A. Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron. Hung. 2007, 55, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Medeot, D.B.; Paulucci, N.S.; Albornoz, A.I.; Fumero, M.V.; Bueno, M.A.; Garcia, M.B.; Woelke, M.R.; Okon, Y.; Dardanelli, M.S. Plant growth promoting rhizobacteria improving the legume–rhizobia symbiosis. In Microbes for Legume Improvement; Khan, M.S., Zaidi, A., Musarrat, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 473–494. [Google Scholar] [CrossRef]
- Tsigie, A.; Tilak, K.V.; Saxena, A.K. Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biol. Fertil. Soils 2011, 47, 971–974. [Google Scholar] [CrossRef]
- Xing, P.; Zhao, Y.; Guan, D.; Li, L.; Zhao, B.; Ma, M.; Jiang, X.; Tian, C.; Cao, F.; Li, J. Effects of Bradyrhizobium Co-Inoculated with Bacillus and Paenibacillus on the Structure and Functional Genes of Soybean Rhizobacteria Community. Genes 2022, 13, 1922. [Google Scholar] [CrossRef] [PubMed]
- Younesi, O.; Baghbani, A.; Namdari, A. The effects of Pseudomonas fluorescence and Rhizobium meliloti co-inoculation on nodulation and mineral nutrient contents in alfalfa (Medicago sativa) under salinity stress. Int. J. Agric. Sci. 2013, 5, 1500–1507. [Google Scholar]
- Wojtaszek, P. Fenolowe Metabolity Wtórne Jako Sygnały Roślin w Oddziaływaniach Międzygatunkowych. Postepy Biochem. 1993, 39, 139–146. [Google Scholar]
- Olejnik, P. The Role of Selected Molecular Mechanisms in Legume—Rhizobia Interactions. Badania Rozw. Młodych Nauk. Polsce Nauk. Przyr. Flora Ochr. Środowiska 2020, 1, 25–30. [Google Scholar]
- Kape, R.; Parniske, M.; Werner, D. Chemotaxis and Nod Gene Activity of Bradyrhizobium japonicum in Response to Hydroxycinnamic Acids and Isoflavonoids. Appl. Environ. Microbiol. 1991, 57, 316–319. [Google Scholar] [CrossRef]
- Pellock, B.J.; Cheng, H.P.; Walker, G.C. Alfalfa Root Nodule Invasion Efficiency Is Dependent on Sinorhizobium meliloti Polysaccharides. J. Bacteriol. 2000, 182, 4310–4318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.M. Increased Production of the Exopolysaccharide Succinoglycan Enhances Sinorhizobium meliloti 1021 Symbiosis with the Host Plant Medicago truncatula. J. Bacteriol. 2012, 194, 4322–4331. [Google Scholar] [CrossRef] [Green Version]
- Kawaharada, Y.; Kelly, S.; Nielsen, M.W.; Hjuler, C.T.; Gysel, K.; Muszyński, A.; Carlson, R.W.; Thygesen, M.B.; Sandal, N.; Asmussen, M.H.; et al. Receptor-Mediated Exopolysaccharide Perception Controls Bacterial Infection. Nature 2015, 523, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Kawaharada, Y.; Nielsen, M.W.; Kelly, S.; James, E.K.; Andersen, K.R.; Rasmussen, S.R.; Füchtbauer, W.; Madsen, L.H.; Heckmann, A.B.; Radutoiu, S.; et al. Differential Regulation of the Epr3 Receptor Coordinates Membrane-Restricted Rhizobial Colonization of Root Nodule Primordia. Nat. Commun. 2017, 8, 14534. [Google Scholar] [CrossRef] [Green Version]
- Gałązka, A.; Król, M.; Perzyński, A. Utilisation of phenolic acids as the sole carbon source in fixation of nitrogen-free by Azospirillum spp. strains of bacteria. Nauk. Przyr. Technol. 2010, 4, 1–13. [Google Scholar]
- Kobayashi, A.; Kim, M.J.; Kawazu, K. Uptake and Exudation of Phenolic Compounds by Wheat and Antimicrobial Components of the Root Exudate. Z. Naturforsch. Sect. C J. Biosci. 1996, 51, 527–533. [Google Scholar] [CrossRef]
- Vereecke, D.; Messens, E.; Klarskov, K.; De Bruyn, A.; Van Montagu, M.; Goethals, K. Patterns of Phenolic Compounds in Leafy Galls of Tobacco. Planta 1997, 201, 342–348. [Google Scholar] [CrossRef]
- Schelud’ko, A.V.; Makrushin, K.V.; Tugarova, A.V.; Krestinenko, V.A.; Panasenko, V.I.; Antonyuk, L.P.; Katsy, E.I. Changes in Motility of the Rhizobacterium Azospirillum brasilense in the Presence of Plant Lectins. Microbiol. Res. 2009, 164, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Zgadzaj, R.; James, E.K.; Kelly, S.; Kawaharada, Y.; de Jonge, N.; Jensen, D.B.; Madsen, L.H.; Radutoiu, S. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria. PLoS Genet. 2015, 11, e1005280. [Google Scholar] [CrossRef]
Bradyrhizobium sp. (Isolated from Nitragina Preparation) | Bradyrhizobium sp. (Isolated from Nitroflora Preparation) | Pseudomonas fluorescens | Bacillus subtilis | |
---|---|---|---|---|
Bradyrhizobium sp. (isolated from Nitragina preparation) | X | - | - | - |
Bradyrhizobium sp. (isolated from Nitroflora preparation) | - | X | - | - |
Pseudomonas fluorescens | - | - | X | - |
Bacillus subtilis | - | - | - | X |
Experiment Variant | Aboveground Parts | Belowground Parts | |||
---|---|---|---|---|---|
Length [cm] | Weight [g] | Length [cm] | Weight [g] | ||
F-statistic | 2.39 | 6.31 | 6.91 | 7.59 | |
p-value | <0.05 | <0.05 | <0.05 | <0.05 | |
1 | Uninoculated seeds (control variant) | 17.5 c | 1.88 b | 17.9 b | 0.72 b |
2 | Seeds inoculated with bacteria of Bradyrhizobium genus isolated from Nitragina preparation | 18.6 bc | 2.59 ab | 20.6 a | 0.96 a |
3 | Seeds inoculated with bacteria of Bradyrhizobium genus isolated from Nitroflora preparation | 19.4 a–c | 2.67 ab | 19.0 ab | 0.83 ab |
4 | Seeds inoculated with Pseudomonas fluorescens | 18.1a–c | 2.34 ab | 12.6 c | 0.83 ab |
5 | Seeds inoculated with Bacillus subtilis | 19.0 a–c | 2.63 ab | 20.4 a | 1.01 a |
6 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from Nitragina preparation and Pseudomonas fluorescens bacteria | 18.9 a–c | 2.64 ab | 20.1 a | 0.89 ab |
7 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from Nitragina preparation and Bacillus subtilis bacteria | 19.1 a–c | 2.84 a | 19.8 a | 0.84 ab |
8 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from the Nitroflora preparation and Pseudomonas fluorescens bacteria | 20.0 ab | 2.71 ab | 20.9 a | 0.97 a |
9 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from Nitroflora preparation and Bacillus subtilis bacteria. | 20.3 a | 2.75 ab | 20.7 a | 0.95 a |
Variant | BNF nMC2H4 Plant−1 h−1 | Number of Root Nodules | Dry Weight of Root Nodules (g) | |
---|---|---|---|---|
F-statistic p-value | 2366.22 <0.05 | 7.87 <0.05 | 2.75 <0.05 | |
1 | Uninoculated seeds (control variant) | 3.5 g | 1.51 a | 0.014 b |
2 | Seeds inoculated with bacteria of Bradyrhizobium genus isolated from Nitragina preparation | 19.1 e | 2.31 ab | 0.020 ab |
3 | Seeds inoculated with bacteria of Bradyrhizobium genus isolated from Nitroflora preparation | 17.5 e | 2.13 bc | 0.025 ab |
4 | Seeds inoculated with Pseudomonas fluorescens | 12.8 f | 2.06 bc | 0.027 ab |
5 | Seeds inoculated with Bacillus subtilis | 14.3 f | 2.16 ab | 0.029 ab |
6 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from Nitragina preparation and Pseudomonas fluorescens bacteria | 36.12 b | 2.51 ab | 0.03 ab |
7 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from Nitragina preparation and Bacillus subtilis bacteria | 33.50 c | 2.52 ab | 0.024 ab |
8 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from the Nitroflora preparation and Pseudomonas fluorescens bacteria | 24.33 d | 2.54 ab | 0.031 ab |
9 | Seeds coinoculated with bacteria of Bradyrhizobium genus isolated from Nitroflora preparation and Bacillus subtilis bacteria. | 39.40 a | 2.77 a | 0.041 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waraczewska, Z.; Niewiadomska, A.; Wolna-Maruwka, A.; Sulewska, H.; Budka, A.; Pilarska, A.A. The Effect of In Vitro Coinoculation on the Physiological Parameters of White Lupine Plants (Lupinus albus L.). Appl. Sci. 2022, 12, 12382. https://doi.org/10.3390/app122312382
Waraczewska Z, Niewiadomska A, Wolna-Maruwka A, Sulewska H, Budka A, Pilarska AA. The Effect of In Vitro Coinoculation on the Physiological Parameters of White Lupine Plants (Lupinus albus L.). Applied Sciences. 2022; 12(23):12382. https://doi.org/10.3390/app122312382
Chicago/Turabian StyleWaraczewska, Zyta, Alicja Niewiadomska, Agnieszka Wolna-Maruwka, Hanna Sulewska, Anna Budka, and Agnieszka A. Pilarska. 2022. "The Effect of In Vitro Coinoculation on the Physiological Parameters of White Lupine Plants (Lupinus albus L.)" Applied Sciences 12, no. 23: 12382. https://doi.org/10.3390/app122312382
APA StyleWaraczewska, Z., Niewiadomska, A., Wolna-Maruwka, A., Sulewska, H., Budka, A., & Pilarska, A. A. (2022). The Effect of In Vitro Coinoculation on the Physiological Parameters of White Lupine Plants (Lupinus albus L.). Applied Sciences, 12(23), 12382. https://doi.org/10.3390/app122312382