A Method for Generation of a Sizing System and Representative Models for a Facial Mask Design
Abstract
:1. Introduction
2. Development of a Sizing System of a Pilot Oxygen Mask for KAF Pilots
2.1. Facial Anthropometric Data of KAF Pilots
2.2. Existing Sizing System of MBU-20/P Pilot Oxygen Mask
2.3. Development of an Oxygen Mask Sizing System for KAF Pilots
2.4. Modification of the Oxygen Mask Sizing System
3. Comparative Selection of RFMs for a Pilot Oxygen Mask for KAF Pilots
- = weight of facial dimension i,
- = measurement (measured value or normalized value) of facial dimension i of a single face in sizing category j, and
- = average (or median) of the measurements (measured value or normalized value) of facial dimension i of all faces in sizing category j.
No. | Face Dimension | Importance | Grand Mean | Centroid of Mask Sizing Category | |||
---|---|---|---|---|---|---|---|
Small Narrow | Medium Narrow | Medium Wide | Large Wide | ||||
1 | face length | H | 123.4 | 114.5 | 121.7 | 122.7 | 129.4 |
2 | lower face length | M | 69.1 | 64.3 | 68.3 | 68.3 | 72.6 |
3 | sellion-to-supramentale length † | M | 97.1 | 87.5 | 95.0 | 95.0 | 105.0 |
4 | supramentale-to-menton length | L | 26.4 | 26.3 | 26.2 | 26.6 | 26.6 |
5 | rhinion-to-menton length | M | 109.1 | 102.0 | 107.4 | 108.8 | 113.9 |
6 | rhinion-to-promentale length | H | 95.8 | 88.0 | 94.1 | 95.8 | 100.3 |
7 | promentale-to-menton length | L | 13.3 | 14.0 | 13.3 | 13.0 | 13.6 |
8 | nose length | M | 54.3 | 50.1 | 53.5 | 54.4 | 56.8 |
9 | nose protrusion | M | 18.4 | 17.8 | 17.9 | 18.5 | 19.0 |
10 | face width | M | 154.8 | 148.6 | 153.5 | 157.2 | 156.5 |
11 | chin width | L | 130.3 | 123.1 | 129.3 | 133.7 | 131.0 |
12 | nasal root breadth | H | 20.0 | 17.7 | 19.6 | 20.9 | 20.6 |
13 | maximum nasal bridge breadth | H | 30.5 | 27.4 | 30.0 | 31.4 | 31.4 |
14 | nose width | H | 37.6 | 35.1 | 37.1 | 38.4 | 38.5 |
15 | lip width † | H | 49.1 | 45.0 | 45.0 | 55.0 | 50.0 |
16 | bitragion-menton arc | L | 313.7 | 295.3 | 310.1 | 318.5 | 319.5 |
17 | bitragion-subnasale arc | L | 283.0 | 269.9 | 280.5 | 286.0 | 287.6 |
18 | bizygomatic-menton arc | L | 304.8 | 288.9 | 301.5 | 308.4 | 311.5 |
No. | WSED Calculation Condition | Pilot Identification Numbers Showing the Smallest WSED | ||||
---|---|---|---|---|---|---|
Type of Measurement Value | Weight | Small Narrow | Medium Narrow | Medium Wide | Large Wide | |
1 | measured | equal | 260 | 165 | 240 | 177 |
2 | measured | unequal | 11 | 307 | 189 | 139 |
3 | normalized | equal | 54 | 128 | 189 | 177 |
4 | normalized | unequal | 32 | 128 | 189 | 139 |
- = the weight of facial dimension i,
- = the measurements (measured value or normalized value) of facial dimension i of a representative face in sizing category j,
- = the averages (or medians) of the measurements (measured value or normalized value) of facial dimension i of all faces in sizing category j, and
- = the standard deviation of the measurements (measured value or normalized value) of facial dimension i of all faces in sizing category j.
No. | WSED Calculation Condition | NED of Representative Face Per Sizing Category | Mean | SD | |||
---|---|---|---|---|---|---|---|
Small Narrow | Medium Narrow | Medium Wide | Large Wide | ||||
1 | Measured value & Equal weight | 0.23 (260) | 0.23 (165) | 0.37 (240) | 0.13 (177) | 0.24 | 0.10 |
2 | Measured value & Unequal weight | 0.20 (11) | 0.21 (307) | 0.14 (189) | 0.15 (139) | 0.18 | 0.04 |
3 | Normalized value & Equal weight | 0.46 (54) | 0.46 (128) | 0.53 (189) | 0.58 (177) | 0.51 | 0.06 |
4 | Normalized value & Unequal weight | 0.58 (32) | 0.49 (128) | 0.53 (189) | 0.66 (139) | 0.56 | 0.07 |
No. | Face Dimension | Facial Measurements of the RFM Per Sizing Category | |||
---|---|---|---|---|---|
Small Narrow (11) | Medium Narrow (307) | Medium Wide (189) | Large Wide (139) | ||
1 | face length | 116.5 | 121.7 | 124.8 | 127.4 |
2 | lower face length | 66.1 | 69.3 | 70.1 | 72.7 |
3 | sellion-to-supramentale length * | 88.1 | 94.4 | 96.5 | 102.6 |
4 | supramentale-to-menton length | 28.4 | 27.3 | 28.3 | 24.8 |
5 | rhinion-to-menton length | 102.9 | 107.4 | 113.3 | 111.9 |
6 | rhinion-to-promentale length | 85.7 | 95.0 | 99.4 | 98.0 |
7 | promentale-to-menton length | 17.2 | 12.4 | 13.9 | 13.9 |
8 | nose length | 50.4 | 52.4 | 54.7 | 54.7 |
9 | nose protrusion | 17.2 | 17.0 | 17.6 | 18.7 |
10 | face width | 144.8 | 150.5 | 157.6 | 156.1 |
11 | chin width | 118.4 | 127.1 | 135.6 | 129.9 |
12 | nasal root breadth | 19.1 | 18.6 | 20.5 | 21.3 |
13 | maximum nasal bridge breadth | 26.4 | 34.4 | 32.8 | 30.3 |
14 | nose width | 33.6 | 38.9 | 37.4 | 35.7 |
15 | lip width * | 46.9 | 44.6 | 54.5 | 50.5 |
16 | bitragion-menton arc | 293.4 | 305.7 | 323.3 | 320.6 |
17 | bitragion-subnasale arc | 266.7 | 278.1 | 292.9 | 292.9 |
18 | bizygomatic-menton arc | 285.2 | 296.6 | 306.5 | 314.6 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- McCulloch, C.E.; Paal, B.; Ashdown, S.P. An optimization approach to apparel sizing. J. Oper. Res. Soc. 1998, 49, 492–499. [Google Scholar] [CrossRef]
- Zakaria, N. Body Shape Analysis and Identification of Key Dimensions for Apparel Sizing Systems. In Anthropometry, Apparel Sizing and Design; Gupta, D., Zakaria, N., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 95–119. [Google Scholar]
- Jung, K.; Kwon, O.; You, H. Evaluation of the multivariate accommodation performance of the grid method. Appl. Ergon. 2010, 42, 156–161. [Google Scholar] [CrossRef]
- Lee, B.; Lee, W.; Yang, X.; Jung, K.; You, H. Development of a distributed representative human model generation and analysis system (DRHM-GAS): Application to optimization of flight suit and pilot oxygen mask sizing systems. Int. J. Ind. Ergonom. 2019, 72, 261–271. [Google Scholar] [CrossRef]
- Lee, W.; Jeong, J.; Park, J.; Jeon, E.; Kim, H.; Jung, D.; Park, S.; You, H. Analysis of the facial measurements of Korean Air Force pilots for oxygen mask design. Ergonomics 2013, 56, 1451–1464. [Google Scholar] [CrossRef]
- Lee, W.; Yang, X.; Jung, H.; You, H.; Goto, L.; Molenbroek, J.F.M.; Goossens, R.H.M. Application of massive 3D head and facial scan datasets in ergonomic head-product design. Int. J. Digit. Hum. 2016, 1, 344–360. [Google Scholar] [CrossRef]
- Zhuang, Z.; Bradtmiller, B.; Shaffer, R.E. New respirator fit test panels representing the current U.S. civilian work force. J. Occup. Environ. Hyg. 2007, 4, 647–659. [Google Scholar] [CrossRef]
- Zhuang, Z.; Bradtmiller, B. Head-and-face anthropometric survey of U.S. respirator users. J. Occup. Environ. Hyg. 2005, 2, 567–576. [Google Scholar] [CrossRef]
- Chen, W.; Zhuang, Z.; Benson, S.; Du, L.; Yu, D.; Landsittel, D.; Wang, L.; Viscusi, D.; Shaffer, R.E. New respirator fit test panels representing the current Chinese civilian workers. Ann. Occup. Hyg. 2009, 53, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Gross, M.E.; Taylor, S.E.; Mountjoy, D.N.; Hoffmeister, J. Anthropometric Research on the Sizing of the MBU-20/P; AFRL-HE-WP-TR-2002-0181; Human Effectiveness Directorate, Crew System Interface Division, Wright-Patterson Air Force Base: Montgomery County Green, OH, USA, 1997. [Google Scholar]
- Self, B.P.; White, C.; Diesel, D.A.; Whitestone, J. Development of an Extra Small Narrow MBU-20/P Oxygen Mask. In Proceedings of the 36th Annual SAFE Symposium, Phoenix, AZ, USA, 14–16 September 1998; pp. 466–472. [Google Scholar]
- Churchill, E.; Kikta, P.; Churchill, T. The AMRL Anthropometric Data Bank Library: Volumes I-V; AMRL-TR-77-1, ADA047314; Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base: Montgomery County Green, OH, USA, 1977. [Google Scholar]
- Zhuang, Z.; Coffey, C.C.; Ann, R.B. The effects of subject characteristics and respirator features on respirator fit. J. Occup. Environ. Hyg. 2005, 2, 641–649. [Google Scholar] [CrossRef]
- Oestenstad, R.K.; Perkins, L.L. An assessment of critical anthropometric dimensions for predicting the fit of a half-mask respirator. Am. Ind. Hyg. Assoc. J. 1992, 53, 639–644. [Google Scholar] [CrossRef]
- Han, D.-H.; Choi, K.-L. Facial dimensions and predictors of fit for half-mask respirators in Koreans. Am. Ind. Hyg. Assoc. J. 2003, 64, 815–822. [Google Scholar] [CrossRef]
- Hack, A.L.; McConville, J.T. Respirator protection factors: Part I—Development of an anthropometric test panel. Am. Ind. Hyg. Assoc. J. 1978, 39, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Lee, W.; Jeong, J.; Jeon, E.; Son, D.; Park, S.; Jung, D.; Kim, H.; You, H. An improvement in the sizing system of oxygen masks for Korean pilots. In Proceedings of the 2011 Fall Conference of Ergonomics Society of Korea, Cheonan, Republic of Korea, 21–22 October 2011. [Google Scholar]
- Lee, W. Development of a Design Methodology of Pilot Oxygen Mask Using 3D Facial Scan Data; Pohang University of Science and Technology: Pohang, Republic of Korea, 2013. [Google Scholar]
- Lee, B.; Jung, K.; You, H. Development of a distributed representative human model (DRHM) generation and analysis system for multiple-size product design. In Proceedings of the Human Factors and Ergonomics Society 57th Annual Meeting, San Diego, CA, USA, 30 September–4 October 2013. [Google Scholar]
- Lacko, D.; Vleugels, J.; Fransen, E.; Huysmans, T.; De Bruyne, G.; Van Hulle, M.M.; Sijbers, J.; Verwulgen, S. Ergonomic design of an EEG headset using 3D anthropometry. Appl. Ergon. 2017, 58, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Ellena, T.; Skals, S.; Subic, A.; Mustafa, H.; Pang, T.Y. 3D digital headform models of Australian cyclists. Appl. Ergon. 2017, 59, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Benson, S.; Viscusi, D. Digital 3-D headforms with facial features representative of the current US workforce. Ergonomics 2010, 53, 661–671. [Google Scholar] [CrossRef]
- Han, D.; Rhi, J.; Lee, J. Development of prototypes of half-mask facepieces for Koreans using the 3D digitizing design method: A pilot study. Ann. Occup. Hyg. 2004, 48, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.M. 3-D design tools from the SizeChina project. Ergon. Des. 2009, 17, 8–13. [Google Scholar] [CrossRef]
- Ball, R.M.; Molenbroek, J.F.M. Measuring Chinese heads and faces. In Proceedings of the 9th International Congress of Physiological Anthropology, Human Diversity: Design for Life, Delft, The Netherlands, 22–26 August 2008; pp. 150–155. [Google Scholar]
- Lee, W.; Jung, D.; Park, S.; Kim, H.; You, H. Development of a virtual fit analysis method for an ergonomic design of pilot oxygen mask. Appl. Sci. 2021, 11, 5332. [Google Scholar] [CrossRef]
- Lee, W.; Yang, X.; Jung, D.; Park, S.; Kim, H.; You, H. Ergonomic evaluation of pilot oxygen mask designs. Appl. Ergon. 2018, 67, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, H.; Jung, D.; Park, S.; You, H. Ergonomic design and evaluation of a pilot oxygen mask. In Proceedings of the Human Factors and Ergonomics Society 57th Annual Meeting, San Diego, CA, USA, 30 September–4 October 2013. [Google Scholar]
- Lee, W.; Goto, L.; Molenbroek, J.F.M.; Goossens, R.H.M. Analysis methods of the variation of facial size and shape based on 3D face scan images. In Proceedings of the Human Factors and Ergonomics Society 61st Annual Meeting, Austin, TX, USA, 9–13 October 2017. [Google Scholar]
- Lee, W.; Molenbroek, J.F.M.; Goto, L.; Jellema, A.H.; Song, Y.; Goossens, R.H.M. Application of 3D Scanning in Design Education. In DHM and Posturography, Scataglini, S., Paul, G., Eds.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Lee, W.; Jung, H.; You, H. Application of 3D human body template model for ergonomic product design. J. Ergon. Soc. Korea 2020, 39, 223–241. [Google Scholar] [CrossRef]
- Lee, W.; Jung, H.; You, H. Development of a 3D template-registered image database of Korean heads for ergonomic product design. J. Ergon. Soc. Korea 2020, 39, 437–451. [Google Scholar] [CrossRef]
No. | Face Dimensions | n | Mean | SD | Min | Max | Percentile | |||
---|---|---|---|---|---|---|---|---|---|---|
1st | 5th | 95th | 99th | |||||||
1 | face length | 336 | 123.4 | 6.1 | 106.7 | 140.4 | 108.0 | 113.1 | 133.2 | 136.6 |
2 | lower face length | 336 | 69.1 | 4.5 | 57.5 | 83.6 | 58.6 | 61.8 | 76.3 | 79.4 |
3 | sellion-to-supramentale length | 336 | 97.1 | 5.2 | 80.7 | 114.1 | 85.3 | 88.3 | 104.7 | 109.4 |
4 | supramentale-to-menton length | 336 | 26.4 | 3.0 | 18.6 | 36.2 | 19.7 | 21.4 | 31.0 | 34.6 |
5 | rhinion-to-menton length | 336 | 109.1 | 5.5 | 93.2 | 124.3 | 95.8 | 99.8 | 117.7 | 120.8 |
6 | rhinion-to-promentale length | 336 | 95.8 | 5.6 | 78.2 | 108.9 | 83.7 | 86.7 | 104.9 | 108.1 |
7 | promentale-to-menton length | 336 | 13.3 | 2.5 | 4.9 | 20.6 | 7.9 | 9.5 | 17.6 | 19.1 |
8 | nose length | 336 | 54.3 | 3.4 | 43.2 | 62.2 | 46.6 | 48.6 | 60.3 | 61.9 |
9 | nose protrusion | 336 | 18.4 | 1.9 | 12.9 | 23.9 | 14.2 | 15.3 | 21.6 | 23.0 |
10 | face width | 336 | 154.8 | 6.4 | 132.4 | 171.5 | 138.6 | 144.0 | 164.2 | 168.2 |
11 | chin width | 336 | 130.3 | 8.6 | 105.4 | 156.7 | 112.5 | 116.5 | 144.6 | 150.8 |
12 | nasal root breadth | 336 | 20.0 | 2.8 | 12.3 | 27.7 | 14.0 | 15.2 | 24.6 | 26.8 |
13 | maximum nasal bridge breadth | 336 | 30.5 | 2.8 | 22.3 | 37.7 | 24.2 | 25.6 | 35.3 | 36.7 |
14 | nose width | 336 | 37.6 | 2.7 | 30.3 | 45.8 | 31.8 | 33.4 | 42.4 | 43.8 |
15 | lip width | 336 | 49.1 | 3.8 | 38.5 | 58.2 | 40.7 | 42.6 | 55.5 | 57.4 |
16 | bitragion-menton arc | 336 | 313.7 | 16.2 | 269.0 | 361.1 | 273.5 | 284.1 | 339.1 | 347.3 |
17 | bitragion-subnasale arc | 336 | 283.0 | 12.9 | 234.9 | 319.6 | 252.1 | 263.1 | 304.5 | 312.1 |
18 | bizygomatic-menton arc | 336 | 304.8 | 14.5 | 261.3 | 339.6 | 267.0 | 277.8 | 327.6 | 336.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.; Lee, B.; Yang, X.; You, H. A Method for Generation of a Sizing System and Representative Models for a Facial Mask Design. Appl. Sci. 2022, 12, 12387. https://doi.org/10.3390/app122312387
Lee W, Lee B, Yang X, You H. A Method for Generation of a Sizing System and Representative Models for a Facial Mask Design. Applied Sciences. 2022; 12(23):12387. https://doi.org/10.3390/app122312387
Chicago/Turabian StyleLee, Wonsup, Baekhee Lee, Xiaopeng Yang, and Heecheon You. 2022. "A Method for Generation of a Sizing System and Representative Models for a Facial Mask Design" Applied Sciences 12, no. 23: 12387. https://doi.org/10.3390/app122312387
APA StyleLee, W., Lee, B., Yang, X., & You, H. (2022). A Method for Generation of a Sizing System and Representative Models for a Facial Mask Design. Applied Sciences, 12(23), 12387. https://doi.org/10.3390/app122312387