Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Collection Data in Study Area
2.2. Pre-Processing for Data Analysis
2.2.1. Determination of Independent and Dependent Variables
2.2.2. Correlation Analysis between Independent Variables
2.2.3. Correlation Analysis between Independent and Dependent Variables
2.2.4. Data Standardization through T-Score Conversion
2.3. Evaluation of Leakage Management Efficiency and Determination of Formulation of Leakage
2.3.1. Multiple Regression Analysis
2.3.2. Deep Neural Network
3. Application and Results
3.1. Study Area and Data
3.2. Pre-Processing for Data Analysis
3.3. Evaluation of Water Loss Management Efficiency and Determination of Formulation of Water Loss
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Criminisi, A.; Fontanazza, C.M.; Freni, G.; Loggia, G.L. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply. Water Sci. Technol. 2009, 60, 2373–2382. [Google Scholar] [CrossRef] [PubMed]
- De Marchis, M.; Fontanazza, C.M.; Freni, G.; La Loggia, G.; Napoli, E.; Notaro, V. A model of the filling process of an intermittent distribution network. Urban Water J. 2010, 7, 321–333. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Wang, X.; Yang, H.; Sun, J. Pipe burst risk state assessment and classification based on water hammer analysis for water supply networks. J. Water Resour. Plan. Manag. 2014, 140, 04014005. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Shaheen, H.; Samhan, S.; Rabi, A.; Al-Wadi, F.; Fuchs-Hanusch, D. Utilizing analytic hierarchy process (AHP) for decision making in water loss management of intermittent water supply systems. J. Water Sanit. Hyg. Dev. 2016, 6, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Ndunguru, M.G.; Hoko, Z. Assessment of water loss in Harare, Zimbabwe. J. Water Sanit. Hyg. Dev. 2016, 6, 519–533. [Google Scholar] [CrossRef]
- Kayaalp, F.; Zengin, A.; Kara, R.; Zavrak, S. Leakage detection and localization on water transportation pipelines: A multi-label classification approach. Neural Comput. Appl. 2017, 28, 2905–2914. [Google Scholar] [CrossRef]
- Taha, A.W.; Sharma, S.; Lupoja, R.; Fadhl, A.N.; Haidera, M.; Kennedy, M. Assessment of water losses in distribution networks: Methods, applications, uncertainties, and implications in intermittent supply. Resour. Conserv. Recycl. 2020, 152, 104515. [Google Scholar]
- Negharchi, S.M.; Shafaghat, R. Leakage estimation in water networks based on the BABE and MNF analyses: A case study in Gavankola village, Iran. Water Supply 2020, 20, 2296–2310. [Google Scholar] [CrossRef]
- Choi, T.; Kang, K.; Koo, J. Efficiency evaluation of leakage management using data envelopment analysis. J.-Am. Water Work. Assoc. 2015, 107, E1–E11. [Google Scholar] [CrossRef]
- Lambert, A. Accounting for losses: The bursts and background concept. Water Environ. J. 1994, 8, 205–214. [Google Scholar] [CrossRef]
- Boztaş, F.; Özdemir, Ö.; Durmuşçelebi, F.M.; Firat, M.A.H.M.U.T. Analyzing the effect of the unreported leakages in service connections of water distribution networks on non-revenue water. Int. J. Environ. Sci. Technol. 2019, 16, 4393–4406. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–4. [Google Scholar]
- Abdi, H. The Kendall rank correlation coefficient. Encycl. Meas. Stat. 2007, 2, 508–510. [Google Scholar]
- Mark, J.; Goldberg, M.A. Multiple regression analysis and mass assessment: A review of the issues. Apprais. J. 1988, 56, 89–109. [Google Scholar]
- Krizhevsky, I.A.; Sutskever, G.E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS’2012), Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Wang, S.C. Artificial neural network. In Interdisciplinary Computing in Java Programming; Springer: Boston, MA, USA, 2003; pp. 81–100. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
Study Area | Revenue Water Ratio | Increase Revenue Water Ratio | Leakage Ratio | Decrease Leakage Ratio | Pipe Replacement (PR) | Meter Replacement (MR) | Leakage Repair (LR) | Leakage Detection (LD) |
---|---|---|---|---|---|---|---|---|
% | % | % | % | km/km × Million | No./Per. × 1000 | No./km × 1000 | No./km × 1000 | |
TY 2011 | 47.1 | 6.7 | 40.5 | −5.7 | 28.776 | 40.958 | 1.771 | 1.261 |
HP 2011 | 49.3 | −0.9 | 28.5 | 0.1 | 0.000 | 30.599 | 0.359 | 0.186 |
HP 2010 | 50.2 | 5.4 | 28.6 | −0.2 | 19.158 | 141.390 | 0.645 | 0.250 |
BH 2014 | 52.2 | −15.2 | 43.1 | −15.5 | 0.229 | 37.663 | 0.107 | 0.000 |
NS 2005 | 54.1 | −2.6 | 36.3 | 0.2 | 11.594 | 35.942 | 2.839 | 0.516 |
JD 2014 | 54.8 | 9.0 | 40.7 | 9.7 | 22.270 | 89.247 | 0.489 | 0.249 |
BH 2015 | 57.6 | 5.4 | 31.6 | 11.5 | 9.971 | 114.219 | 0.455 | 0.213 |
SC 2007 | 58.0 | 10.9 | 36.0 | −0.4 | 24.310 | 24.889 | 0.920 | 0.456 |
GS 2011 | 58.3 | 10.6 | 36.6 | 3.2 | 14.601 | 59.704 | 0.464 | 0.630 |
WD 2015 | 59.3 | 8.7 | 40.7 | 8.7 | 7.408 | 14.482 | 0.298 | 0.160 |
TY 2012 | 59.6 | 12.5 | 35.9 | 4.6 | 35.705 | 27.696 | 1.934 | 0.756 |
HP 2012 | 59.8 | 10.5 | 35.7 | −7.2 | 0.000 | 30.473 | 0.346 | 0.147 |
CS 2018 | 59.8 | 0.1 | 37.0 | 3.3 | 0.000 | 227.128 | 0.644 | 0.319 |
GR 2008 | 60.6 | 9.2 | 35.0 | 8.4 | 8.053 | 32.365 | 1.137 | 0.272 |
HP 2013 | 62.5 | 2.7 | 28.6 | 7.1 | 10.347 | 1.468 | 0.457 | 0.269 |
JE 2006 | 62.7 | 9.7 | 32.0 | 8.0 | 16.094 | 19.853 | 0.842 | 0.072 |
DY 2009 | 64.1 | 2.5 | 14.1 | 0.4 | 13.584 | 67.877 | 0.762 | 0.593 |
YC 2007 | 64.2 | 7.1 | 27.9 | −4.2 | 40.304 | 55.074 | 2.100 | 0.100 |
NS 2006 | 64.5 | 10.4 | 29.4 | 6.9 | 45.217 | 10.604 | 4.322 | 0.180 |
BH 2016 | 64.9 | 7.3 | 25.9 | 5.7 | 29.730 | 52.147 | 0.505 | 0.207 |
SC 2008 | 65.2 | 7.2 | 28.9 | 7.1 | 15.390 | 21.729 | 0.802 | 0.318 |
GS 2012 | 66.2 | 7.9 | 29.0 | 7.6 | 41.112 | 36.274 | 0.659 | 0.342 |
GJ 2009 | 66.4 | 7.6 | 27.4 | 9.4 | 18.491 | 5.685 | 2.846 | 1.097 |
JD 2015 | 66.7 | 11.9 | 28.5 | 12.2 | 30.748 | 31.010 | 0.315 | 0.293 |
JE 2007 | 67.7 | 5.0 | 15.1 | 16.9 | 32.885 | 8.071 | 0.951 | 0.292 |
GJ 2010 | 67.8 | 1.4 | 26.9 | 0.5 | 19.846 | 7.281 | 1.717 | 0.763 |
WD 2016 | 67.9 | 8.6 | 27.2 | 13.5 | 40.430 | 30.411 | 0.336 | 0.258 |
GeS 2009 | 69.5 | −1.1 | 25.1 | −1.0 | 32.920 | 23.754 | 0.905 | 0.237 |
NS 2007 | 69.8 | 5.3 | 27.5 | 1.9 | 125.818 | 10.432 | 2.604 | 0.074 |
Standard of Categorization | PR | MR | LR | LD | ||
---|---|---|---|---|---|---|
All data | Leakage ratio of higher than 20% | PR | 1 | - | - | - |
MR | −0.103 | 1 | - | - | ||
LR | 0.401 | −0.145 | 1 | - | ||
LD | 0.006 | −0.044 | 0.360 | 1 | ||
Revenue water ratio of less than 70% | PR | 1 | - | - | - | |
MR | −0.268 | 1 | - | - | ||
LR | 0.455 | −0.273 | 1 | - | ||
LD | −0.079 | −0.086 | 0.318 | 1 | ||
The leakage ratio | Less than 10% | PR | 1 | - | - | - |
MR | 0.461 | 1 | - | - | ||
LR | 0.832 | 0.422 | 1 | - | ||
LD | 0.854 | 0.457 | 0.866 | 1 | ||
10–20% | PR | 1 | - | - | - | |
MR | 0.021 | 1 | - | - | ||
LR | 0.416 | −0.002 | 1 | - | ||
LD | 0.272 | 0.064 | 0.649 | 1 | ||
20–30% | PR | 1 | - | - | - | |
MR | 0.025 | 1 | - | - | ||
LR | 0.420 | −0.168 | 1 | - | ||
LD | −0.118 | −0.176 | 0.243 | 1 | ||
Higher than 30% | PR | 1 | - | - | - | |
MR | −0.316 | 1 | - | - | ||
LR | 0.497 | −0.213 | 1 | - | ||
LD | 0.690 | −0.071 | 0.616 | 1 | ||
The revenue water ratio | Less than 60% | PR | 1 | - | - | - |
MR | −0.191 | 1 | - | - | ||
LR | 0.525 | −0.195 | 1 | - | ||
LD | 0.710 | −0.157 | 0.664 | 1 | ||
60–70% | PR | 1 | - | - | - | |
MR | −0.136 | 1 | - | - | ||
LR | 0.386 | −0.337 | 1 | - | ||
LD | −0.373 | −0.165 | 0.151 | 1 | ||
70–80% | PR | 1 | - | - | - | |
MR | 0.026 | 1 | - | - | ||
LR | 0.399 | −0.021 | 1 | - | ||
LD | 0.113 | 0.023 | 0.431 | 1 | ||
Higher than 80% | PR | 1 | - | - | - | |
MR | 0.106 | 1 | - | - | ||
LR | 0.186 | 0.003 | 1 | - | ||
LD | 0.240 | −0.065 | 0.671 | 1 |
Standard of Categorization | Pipe Replacement (PR) | Meter Replacement (MR) | Leakage Repair (LR) | Leakage Detection (LD) | |
---|---|---|---|---|---|
km/km × Million | No./Per. × 1000 | No./km × 1000 | No./km × 1000 | ||
All data | Leakage ratio of higher than 20% | 0.112 | −0.013 | 0.064 | 0.059 |
Revenue water ratio of less than 70% | 0.131 | −0.074 | −0.026 | −0.034 | |
The leakage ratio | Less than 10% | 0.776 | 0.595 | 0.688 | 0.695 |
10–20% | 0.582 | −0.060 | 0.284 | 0.166 | |
20–30% | 0.097 | −0.213 | 0.094 | 0.225 | |
Higher than 30% | 0.216 | 0.199 | 0.003 | −0.119 | |
The revenue water ratio | Less than 60% | 0.569 | −0.111 | 0.071 | 0.374 |
60–70% | 0.023 | 0.082 | 0.136 | −0.227 | |
70–80% | 0.463 | −0.190 | 0.287 | 0.197 | |
Higher than 80% | 0.507 | −0.103 | 0.107 | 0.248 |
Study Area | Leakage Ratio Reduction (%) | Pipe Replacement (PR) | Meter Replacement (MR) | Leakage Repair (LR) | Leakage Detection (LD) | T-Score for PR | T-Score for MR | T-Score for LR | T-Score for LD |
---|---|---|---|---|---|---|---|---|---|
NS 2012 | 0.50 | 6.45 | 15.96 | 0.40 | 0.12 | 61.74 | 51.38 | 59.54 | 57.62 |
GJ 2013 | −1.20 | 0.00 | 21.01 | 0.19 | 0.01 | 42.28 | 56.61 | 46.61 | 41.32 |
GJ2017 | 0.80 | 0.28 | 3.63 | 0.16 | 0.02 | 43.14 | 38.65 | 44.61 | 42.20 |
PJ 2012 | 0.60 | 3.20 | 9.87 | 0.38 | 0.12 | 51.94 | 45.10 | 57.83 | 56.98 |
DDC 2015 | −2.70 | 2.66 | 13.01 | 0.17 | 0.06 | 50.32 | 48.33 | 45.12 | 47.41 |
GJ 2018 | 0.50 | 0.33 | 28.02 | 0.16 | 0.04 | 43.27 | 63.84 | 44.93 | 45.69 |
YJ 2010 | −1.60 | 1.26 | 10.88 | 0.32 | 0.11 | 46.07 | 46.14 | 54.73 | 54.95 |
PJ 2013 | 0.40 | 2.45 | 9.39 | 0.33 | 0.04 | 49.68 | 44.60 | 54.85 | 45.05 |
YJ 2011 | 0.20 | 0.92 | 15.67 | 0.28 | 0.03 | 45.07 | 51.09 | 52.07 | 44.09 |
PJ 2014 | 0.40 | 2.19 | 8.99 | 0.34 | 0.12 | 48.90 | 44.18 | 55.67 | 56.45 |
GJ 2012 | 1.90 | 0.28 | 18.49 | 0.18 | 0.02 | 43.12 | 54.00 | 45.65 | 42.77 |
PJ 2015 | 0.40 | 7.35 | 10.22 | 0.42 | 0.12 | 64.45 | 45.45 | 60.67 | 57.07 |
DDC 2017 | −0.40 | 3.36 | 24.76 | 0.12 | 0.05 | 52.43 | 60.48 | 42.43 | 46.31 |
YJ 2013 | 0.00 | 0.00 | 15.11 | 0.17 | 0.01 | 42.28 | 50.51 | 45.40 | 40.16 |
YJ 2012 | 1.30 | 0.00 | 3.26 | 0.21 | 0.01 | 42.28 | 38.26 | 47.98 | 40.18 |
DDC 2016 | 1.80 | 1.15 | 32.23 | 0.04 | 0.02 | 45.75 | 68.19 | 37.62 | 41.57 |
YJ 2009 | −0.90 | 1.47 | 9.03 | 0.25 | 0.10 | 46.72 | 44.23 | 49.97 | 54.14 |
NJ 2016 | 2.70 | 0.18 | 22.49 | 0.09 | 0.09 | 42.83 | 58.13 | 40.73 | 53.12 |
PJ 2017 | −0.50 | 4.11 | 8.80 | 0.22 | 0.13 | 54.69 | 43.99 | 48.54 | 58.75 |
EC 2008 | 20.40 | 16.33 | 49.98 | 0.94 | 0.34 | 91.54 | 86.53 | 91.86 | 89.58 |
YJ 2015 | −0.30 | 0.15 | 6.21 | 0.14 | 0.03 | 42.73 | 41.32 | 43.34 | 43.38 |
YJ 2014 | 0.70 | 0.14 | 8.25 | 0.14 | 0.01 | 42.71 | 43.42 | 43.32 | 41.22 |
PJ 2016 | 1.30 | 3.87 | 15.03 | 0.31 | 0.15 | 53.94 | 50.42 | 53.65 | 61.41 |
DDC 2014 | 6.00 | 6.98 | 2.57 | 0.17 | 0.07 | 63.32 | 37.56 | 45.52 | 49.15 |
DDC 2018 | 2.10 | 2.17 | 10.66 | 0.21 | 0.10 | 48.83 | 45.91 | 47.79 | 53.94 |
PJ 2018 | 1.80 | 3.23 | 14.54 | 0.41 | 0.11 | 52.03 | 49.92 | 59.78 | 55.95 |
YJ 2018 | −0.50 | 1.54 | 15.93 | 0.17 | 0.02 | 46.92 | 51.35 | 45.46 | 42.69 |
YJ 2017 | −0.20 | 0.76 | 11.52 | 0.11 | 0.01 | 44.56 | 46.80 | 41.79 | 40.84 |
YJ 2016 | 3.40 | 1.38 | 8.42 | 0.12 | 0.05 | 46.46 | 43.60 | 42.53 | 46.02 |
Standard of Categorization | MRA | DNN | ||||||
---|---|---|---|---|---|---|---|---|
Leakage Management Model Formulation | Used Variables | R | ||||||
X1 | X2 | X3 | X4 | |||||
Leakage ratio | Less than 10% (Group 1) | YG1 = 0.22X1 + 0.12X2 + 0.04X3 − 3.17 | O | O | O | 0.82 | 0.78 | |
10–20% (Group 2) | YG2 = 0.14X1 + 1.06X3 + 0.24 | O | O | 0.59 | 0.56 | |||
20–30% (Group 3) | YG3 = 0.03X1 + 7.01X4 + 1.71 | O | O | 0.32 | 0.57 | |||
Higher than 30% (Group 4) | YG4 = 0.52X1 + 0.06X2 + 1.47X3 − 3.41 | O | O | O | 0.58 | 0.66 | ||
Revenue water ratio | Less than 60% (Group 5) | YG5 = 0.42X1 + 3.75X4 + 1.14 | O | O | 0.64 | 0.71 | ||
60–70% (Group 6) | YG6 = 0.02X2 + 0.94X3 + 6.99 | O | O | 0.34 | 0.45 | |||
70–80% (Group 7) | YG7 = 0.08X1 + 0.85X3 + 4.34X4 + 1.53 | O | O | O | 0.53 | 0.55 | ||
Higher than 80% (Group 8) | YG8 = 0.1X1 + 4.35X4 − 0.47 | O | O | 0.55 | 0.58 |
Study Area | Revenue Water Ration | Increase Revenue Water Ration | Leakage Ratio | Decrease Leakage Ratio | Pipe Replacement (PR) | Meter Replacement (MR) | Leakage Repair (LR) | Leakage Detection (LD) |
---|---|---|---|---|---|---|---|---|
% | % | % | % | km/km × Million | No./Per. × 1000 | No./km × 1000 | No./km × 1000 | |
GeJ 2009 | 66.4 | 7.6 | 27.4 | 9.4 | 18.49 | 5.68 | 2.85 | 1.10 |
GeJ 2010 | 67.8 | 1.4 | 26.9 | 0.5 | 19.85 | 7.28 | 1.72 | 0.76 |
GeJ 2011 | 72.5 | 4.7 | 22.1 | 4.8 | 4.57 | 10.23 | 0.55 | 0.42 |
GeJ 2012 | 75.6 | 3.1 | 19.4 | 2.7 | 32.32 | 12.44 | 0.78 | 0.51 |
GeJ 2013 | 74.8 | −0.8 | 19.2 | 0.2 | 20.30 | 8.91 | 0.88 | 0.40 |
GeJ 2014 | 80.4 | 5.6 | 14.7 | 4.5 | 26.43 | 5.80 | 0.65 | 0.33 |
GeJ 2015 | 80.5 | 0.1 | 14.7 | 0.0 | 14.04 | 9.16 | 0.68 | 0.37 |
GeJ 2016 | 80.0 | −0.5 | 14.8 | −0.1 | 6.47 | 11.03 | 0.54 | 0.18 |
GeJ 2017 | 80.3 | 0.3 | 15.1 | −0.3 | 1.43 | 6.86 | 0.67 | 0.17 |
GeJ 2018 | 75.9 | −4.4 | 19.5 | −4.4 | 1.73 | 7.52 | 0.71 | 0.21 |
GR 2008 | 60.6 | 9.2 | 35.0 | 8.4 | 8.05 | 32.37 | 1.14 | 0.27 |
GR 2009 | 72.1 | 11.5 | 12.4 | 22.6 | 64.17 | 26.88 | 0.83 | 0.21 |
GR 2010 | 72.3 | 0.2 | 21.2 | −8.8 | 2.45 | 15.60 | 0.60 | 0.06 |
GR 2011 | 76.7 | 4.4 | 18.7 | 2.5 | 2.62 | 34.67 | 0.74 | 0.15 |
GR 2012 | 78.6 | 1.9 | 16.6 | 2.1 | 3.25 | 33.51 | 0.86 | 0.22 |
GR 2013 | 80.0 | 1.4 | 15.0 | 1.6 | 3.44 | 10.95 | 0.80 | 0.46 |
GR 2014 | 80.0 | 0.0 | 15.5 | −0.5 | 7.70 | 14.62 | 0.68 | 0.39 |
GR 2015 | 80.3 | 0.3 | 15.2 | 0.3 | 2.34 | 49.38 | 0.46 | 0.28 |
GR 2016 | 80.7 | 0.4 | 14.8 | 0.4 | 2.31 | 28.57 | 0.54 | 0.19 |
GR 2017 | 78.2 | −2.5 | 14.9 | −0.1 | 1.05 | 50.59 | 0.37 | 0.14 |
GR 2018 | 75.6 | −2.6 | 14.9 | 0.0 | 1.48 | 51.91 | 0.26 | 0.13 |
··· | ||||||||
GS 2011 | 58.3 | 10.6 | 36.6 | 3.2 | 14.60 | 59.70 | 0.46 | 0.63 |
GS 2012 | 66.2 | 7.9 | 29.0 | 7.6 | 41.11 | 36.27 | 0.66 | 0.34 |
GS 2013 | 73.0 | 6.8 | 22.5 | 6.5 | 21.53 | 35.11 | 0.46 | 0.25 |
GS 2014 | 80.0 | 7.0 | 15.0 | 7.5 | 50.51 | 11.34 | 0.33 | 0.18 |
GS 2015 | 78.1 | −1.9 | 17.2 | −2.2 | 14.23 | 18.69 | 0.32 | 0.20 |
GS 2016 | 80.5 | 2.4 | 14.9 | 2.3 | 6.99 | 22.07 | 0.28 | 0.18 |
GS 2017 | 80.3 | −0.2 | 15.0 | −0.1 | 0.77 | 24.29 | 0.29 | 0.16 |
GS 2018 | 79.3 | −1.0 | 15.9 | −0.9 | 2.88 | 25.73 | 0.22 | 0.12 |
Standard of Categorization | MRA | DNN | |
---|---|---|---|
Leakage Management Model Formulation | R | ||
GeJ | YGeJ = −0.34X2 − 4.59X3 + 19.28X4 + 1.68 | 0.75 | 0.76 |
GR | YGR = 0.35X1+ 0.24X2 + 11.05X3 + 14.07X4 − 18.62 | 0.98 | 0.82 |
GS | YGS = 0.35X1 + 0.30X2 − 2.22X3 − 20.35X4 − 6.37 | 0.91 | 0.92 |
NJ | YNJ = 0.12X1 − 0.11X2 − 7.57X3 + 16.26X4 + 1.53 | 0.77 | 0.84 |
DDC | YDDC = −0.06X1 − 0.10X2 − 72.42X3 − 13.54X4 + 5.50 | 0.85 | 0.86 |
BH | YBH = −0.14X1 + 0.03X2 − 10.64X3 + 13.99X4 − 15.41 | 0.99 | 0.99 |
SC | YSC = −0.40X1 − 0.18X2 + 30.92X3 − 21.09X4 − 2.51 | 0.76 | 0.85 |
SS | YSS = 0.22X1 + 0.03X2 − 3.59X3 + 26.57X4 − 1.13 | 0.9 | 0.86 |
JE | YJE = −0.19X1 + 0.01X2 + 22.64X3 + 14.56X4 − 6.19 | 0.99 | 0.99 |
TY | YTY = 0.22X1 − 0.38X2 + 1.47X3 − 1.90X4 + 5.06 | 0.82 | 0.87 |
HP | YHP = 0.50X1 − 0.09X2 + 1.67X3 + 35.71X4 − 6.39 | 0.87 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.H.; Choi, T.; Yoo, D.G.; Lee, S. Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities. Appl. Sci. 2022, 12, 12530. https://doi.org/10.3390/app122412530
Choi YH, Choi T, Yoo DG, Lee S. Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities. Applied Sciences. 2022; 12(24):12530. https://doi.org/10.3390/app122412530
Chicago/Turabian StyleChoi, Young Hwan, Taeho Choi, Do Guen Yoo, and Seungyub Lee. 2022. "Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities" Applied Sciences 12, no. 24: 12530. https://doi.org/10.3390/app122412530
APA StyleChoi, Y. H., Choi, T., Yoo, D. G., & Lee, S. (2022). Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities. Applied Sciences, 12(24), 12530. https://doi.org/10.3390/app122412530