Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Medium
2.2. Aquaculture Wastewater
2.3. Experimental Setup
2.4. Kinetic Growth Parameters
2.5. Nutrient Removal
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microalgal Growth
3.2. Wastewater Treatment
3.3. Biomass Valorisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geng, B.; Li, Y.; Liu, X.; Ye, J.; Guo, W. Effective treatment of aquaculture wastewater with mussel/microalgae/bacteria complex ecosystem: A pilot study. Sci. Rep. 2022, 12, 2263. [Google Scholar] [CrossRef] [PubMed]
- Chatvijitkul, S.; Boyd, C.E.; Davis, D.A.; McNevin, A.A. Pollution potential indicators for feed-based fish and shrimp culture. Aquaculture 2017, 477, 43–49. [Google Scholar] [CrossRef]
- Lemley, D.A.; Adams, J.B. Eutrophication. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Oxford, UK, 2019; pp. 86–90. [Google Scholar]
- Ngatia, L.; Grace, J.M., III; Moriasi, D.; Taylor, R. Nitrogen and phosphorus eutrophication in marine ecosystems. In Monitoring of Marine Pollution; Fouzia, H.B., Ed.; IntechOpen: London, UK, 2019; pp. 1–17. [Google Scholar]
- European Union. Directive 1991/271/EEC—Directive of the European Council oh 21 May 1991 concerning urban wastewater treatment. J. Eur. Commun. 1991, 34, 40. [Google Scholar]
- European Union. Directive 1998/15/EC—Directive of the European Commissin of 27 February 1998 amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I thereof. Off. J. Eur. Union 1998, 67, 29–30. [Google Scholar]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Roselet, F.; Vandamme, D.; Muylaert, K.; Abreu, P.C. Harvesting of microalgae for biomass production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Springer: Singapore, 2019; pp. 211–243. [Google Scholar]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ho, S.-H. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. Chemosphere 2021, 291, 132863. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Show, P.L.; Tang, M.S.; Nagarajan, D.; Ling, T.C.; Ooi, C.-W.; Chang, J.-S. A holistic approach to managing microalgae for biofuel applications. Int. J. Mol. Sci. 2017, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lv, J.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910. [Google Scholar] [CrossRef]
- Chai, W.S.; Tan, W.G.; Munawaroh, H.S.H.; Gupta, V.K.; Ho, S.-H.; Show, P.L. Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environ. Pollut. 2021, 269, 116236. [Google Scholar] [CrossRef]
- Viegas, C.; Gouveia, L.; Gonçalves, M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. J. Environ. Manag. 2021, 286, 112187. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Gałczyńska, M.; Zając, G.; Szyszlak-Bargłowicz, J. Production of microalgal biomass using aquaculture wastewater as growth medium. Water 2019, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.; Na, L.; Bao-Long, W.; Tao, Z.; Peng-Fei, M.; Wei-Xiao, Z.; Sraboni, N.Z.; Zheng, M.; Ying-Qi, Z.; Liu, Y. Capabilities and mechanisms of microalgae on nutrients and florfenicol removing from marine aquaculture wastewater. J. Environ. Manag. 2022, 320, 115673. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; He, N.; Zheng, Y.; Li, H.; Wang, H.; Wang, Y.; Lu, Y.; Li, Q.; Peng, Y. Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor. Biotechnol. Biofuels 2018, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Kusmayadi, A.; Leong, Y.K.; Yen, H.-W.; Huang, C.-Y.; Chang, J.-S. Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere 2021, 271, 129800. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; McKuin, B.; Fitzgerald, D.S.; Nash, H.M.; Greenwood, C. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci. Rep. 2020, 10, 19328. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; Vandenberg, G.W.; Proulx, E.; Sitek, A.J. Towards sustainable and ocean-friendly aquafeeds: Evaluating a fish-free feed for rainbow trout (Oncorhynchus mykiss) using three marine microalgae species. Elementa 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Hassan, S.W.; Banat, F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef]
- Salgado, E.M.; Gonçalves, A.L.; Sánchez-Soberón, F.; Ratola, N.; Pires, J.C. Microalgal cultures for the bioremediation of urban wastewaters in the presence of siloxanes. Int. J. Environ. Res. Public Health 2022, 19, 2634. [Google Scholar] [CrossRef]
- EPA. Method 352.1: Nitrogen, Nitrate (Colorimetric, Brucine) by Spectrophotometer; EPA: Washington, DC, USA, 1971. [Google Scholar]
- Lee, B.-H.; Park, S.-Y.; Heo, Y.-S.; Yea, S.-S.; Kim, D.-E. Efficient colorimetric assay of RNA polymerase activity using inorganic pyrophosphatase and ammonium molybdate. Bull. Korean Chem. Soc. 2009, 30, 2485–2488. [Google Scholar] [CrossRef] [Green Version]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Lowry, O.H. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Clément-Larosière, B.; Lopes, F.; Gonçalves, A.; Taidi, B.; Benedetti, M.; Minier, M.; Pareau, D. Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Eng. Life Sci. 2014, 14, 509–519. [Google Scholar] [CrossRef]
- Lightenthaler, H. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Esteves, A.F.; Soares, O.S.; Vilar, V.J.; Pires, J.C.; Gonçalves, A.L. The effect of light wavelength on CO2 capture, biomass production and nutrient uptake by green microalgae: A step forward on process integration and optimisation. Energies 2020, 13, 333. [Google Scholar] [CrossRef] [Green Version]
- Zwietering, M.; Jongenburger, I.; Rombouts, F.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, S.B.; Ahmad, A.; Rahim, N.F.M.; Said, N.S.M.; Alnawajha, M.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Ismail, N.I.; Hasan, H.A. Aquaculture in Malaysia: Water-related environmental challenges and opportunities for cleaner production. Environ. Technol. Innov. 2021, 24, 101913. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Guldhe, A.; Ansari, F.A.; Singh, P.; Bux, F. Heterotrophic cultivation of microalgae using aquaculture wastewater: A biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 2017, 99, 47–53. [Google Scholar] [CrossRef]
- Wolkers, H.; Barbosa, M.; Kleinegris, D.M.; Bosma, R.; Wijffels, R.H. Microalgae: The Green Gold of the Future; Wageningen UR: Wageningen, The Netherlands, 2011. [Google Scholar]
- Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017, 6, 33. [Google Scholar] [CrossRef]
- Shi, T.-Q.; Wang, L.-R.; Zhang, Z.-X.; Sun, X.-M.; Huang, H. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front. Bioeng. Biotechnol. 2020, 8, 610. [Google Scholar] [CrossRef]
- Madhumathi, M.; Rengasamy, R. Antioxidant status of Penaeus monodon fed with Dunaliella salina supplemented diet and resistance against WSSV. Int. J. Eng. Sci. Technol. 2011, 3, 7249–7259. [Google Scholar]
- Maliwat, G.C.; Velasquez, S.; Robil, J.L.; Chan, M.; Traifalgar, R.F.; Tayamen, M.; Ragaza, J.A. Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquacult. Res. 2017, 48, 1666–1676. [Google Scholar] [CrossRef]
- Sarker, P.; Gamble, M.; Kelson, S.; Kapuscinski, A. Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquacult. Nutr. 2016, 22, 109–119. [Google Scholar] [CrossRef]
- Haas, S.; Bauer, J.; Adakli, A.; Meyer, S.; Lippemeier, S.; Schwarz, K.; Schulz, C. Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.). J. Appl. Phycol. 2016, 28, 1011–1021. [Google Scholar] [CrossRef]
- Teuling, E.; Schrama, J.W.; Gruppen, H.; Wierenga, P.A. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture 2017, 479, 490–500. [Google Scholar] [CrossRef]
- Raja, R.; Hemaiswarya, S.; Kumar, N.A.; Sridhar, S.; Rengasamy, R. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 2008, 34, 77–88. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Innovative microalgae pigments as functional ingredients in nutrition. In Handbook of Marine Microalgae; Elsevier: Amsterdam, The Netherlands, 2015; pp. 233–243. [Google Scholar]
Parameters | Values | Unit |
---|---|---|
pH | 7.53 ± 0.01 | - |
Conductivity | 1129 ± 1 | µS cm−1 |
Turbidity | 0.655 ± 0.007 | NTU |
TDC | 14.62 ± 0.08 | mg C L−1 |
DOC | 5.86 ± 0.43 | mg C L−1 |
DIC | 8.76 ± 0.17 | mg C L−1 |
TN | 20.23 ± 0.54 | mg N L−1 |
Nitrate-nitrogen (NO3-N) | 10.35 ± 0.22 | mg N L−1 |
Phosphate-phosphorus (PO4-P) | 2.22 ± 0.01 | mg P L−1 |
COD | 10.1 ± 0.6 | mg O2 L−1 |
Experiment | (d−1) | (mgdw L−1) | Px,max (mgdw L−1 d−1) | (mgdw L−1 d−1) |
---|---|---|---|---|
AW | 0.260 ± 0.014 a | 455.9 ± 10.9 a | 60.0 ± 11.8 a | 32.9 ± 1.6 a |
C+ | 0.276 ± 0.004 a | 555.8 ± 18.9 b | 58.8 ± 1.3 a | 41.6 ± 0.1 b |
Nutrient | Assay | S0 (mg L−1) | RE (%) | (d) | k (d−1) | R2 | RMSE (mg L−1) |
---|---|---|---|---|---|---|---|
TN | AW | 20.2 ± 0.5 a | 93.5 ± 2.1 a | 0.38 ± 0.66 | 0.83 ± 0.26 | 0.994 | 0.797 |
C+ | 43.5 ± 0.5 b | 95.6 ± 1.4 a | 1.66 ± 0.42 | 0.44 ± 0.07 | 0.998 | 1.243 | |
NO3-N | AW | 10.7 ± 0.8 a | 98.0 ± 0.1 a | 0.67 ± 0.39 | 0.92 ± 0.21 | 0.998 | 0.281 |
C+ | 38.0 ± 0.3 b | 99.4 ± 0.1 b | 0.00 ± 1.46 | 0.48 ± 0.18 | 0.994 | 1.926 | |
PO4-P | AW | 2.2 ± 0.1 a | 92.7 ± 0.1 a | 0.45 ± 0.11 | 1.48 ± 0.16 | 1.000 | 0.013 |
C+ | 10.4 ± 0.1 b | 98.4 ± 0.1 b | 1.63 ± 0.45 | 0.49 ± 0.09 | 0.998 | 0.313 |
Assay | |||
---|---|---|---|
TN | NO3-N | PO4-P | |
AW | 19.0 ± 1.4 a | 21.9 ± 1.1 a | 62.7 ± 3.2 a |
C+ | 10.9 ± 0.3 b | 10.0 ± 0.1 b | 38.9 ± 0.1 b |
Parameters | AW | C+ |
---|---|---|
Carbohydrates (% w/w) | 48.64 ± 0.83 a | 34.10 ± 1.74 b |
Proteins (% w/w) | 17.93 ± 1.21 a | 20.98 ± 0.34 a |
Lipids (% w/w) | 15.82 ± 0.15 a | 14.98 ± 0.17 b |
Chlorophyll a (% w/w) | 0.68 ± 0.02 a | 1.58 ± 0.02 b |
Chlorophyll b (% w/w) | 0.33 ± 0.01 a | 0.69 ± 0.01 b |
Chlorophyll a + b (% w/w) | 0.99 ± 0.04 a | 2.28 ± 0.03 b |
Carotenoids (% w/w) | 0.21 ± 0.01 a | 0.37 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, A.F.; Soares, S.M.; Salgado, E.M.; Boaventura, R.A.R.; Pires, J.C.M. Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal. Appl. Sci. 2022, 12, 12608. https://doi.org/10.3390/app122412608
Esteves AF, Soares SM, Salgado EM, Boaventura RAR, Pires JCM. Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal. Applied Sciences. 2022; 12(24):12608. https://doi.org/10.3390/app122412608
Chicago/Turabian StyleEsteves, Ana F., Sara M. Soares, Eva M. Salgado, Rui A. R. Boaventura, and José C. M. Pires. 2022. "Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal" Applied Sciences 12, no. 24: 12608. https://doi.org/10.3390/app122412608
APA StyleEsteves, A. F., Soares, S. M., Salgado, E. M., Boaventura, R. A. R., & Pires, J. C. M. (2022). Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal. Applied Sciences, 12(24), 12608. https://doi.org/10.3390/app122412608