Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. GC-MS Analysis
2.3. Weight Loss Measurement
2.4. LANGMUIR Isotherm, Activation and Adsorption Parameters
2.5. EIS and Polarization Curves
2.6. Antioxidant Activity
2.6.1. DPPH Radical Scavenging Assay
2.6.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7. Computational Study
2.8. Molecular Dynamic (MD) Simulations
2.9. Molecular Docking Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Weight Loss Measurements
3.3. LANGMUIR Isotherm, Activation and Adsorption Parameters
3.4. Electrochemical Impedance Spectroscopy
3.5. Polarization Curves
3.6. Antioxidant Activity
3.7. Theoretical Assay
3.7.1. Stability Inter- and Intermolecular Interaction against Fe Surface
“FMOs” Frontier Molecular Orbitals Analysis
“ESP” Molecular-Electrostatic-Potential Profile
3.7.2. Global Chemical Reactivity
3.7.3. Molecular Dynamic (MD) Profile
3.7.4. Molecular Docking Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charrouf, Z.; Guillaume, D. Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. J. Ethnopharmacol. 1999, 67, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Bnouham, M.; Bellahcen, S.; Benalla, W.; Legssyer, A.; Ziyyat, A.; Mekhfi, H. Antidiabetic activity assessment of Argania spinosa oil. J. Complement. Integr. Med. 2008, 5. [Google Scholar] [CrossRef]
- El Babili, F.; Bouajila, J.; Fouraste, I.; Valentin, A.; Mauret, S.; Moulis, C. Chemical study, antimalarial and antioxidant activities, and cytotoxicity to human breast cancer cells (MCF7) of Argania spinosa. Phytomedicine 2010, 17, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Moukal, A. L’arganier, Argania spinosa L.(skeels), usage thérapeutique, cosmétique et alimentaire. Phytothérapie 2004, 2, 135–141. [Google Scholar] [CrossRef]
- Berrougui, H.; Ettaib, A.; Gonzalez, M.H.; de Sotomayor, M.A.; Bennani-Kabchi, N.; Hmamouchi, M. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. J. Ethnopharmacol. 2003, 89, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Popoola, A.; Olorunniwo, O.; Ige, O. Corrosion resistance through the application of anti-corrosion coatings. Dev. Corros. Prot. 2014, 13, 241–270. [Google Scholar]
- Ziouche, A.; Hammouda, A.; Boucherou, N.; Mokhtari, M.; Hafez, B.; Elmsellem, H.; Abaidia, S. Corrosion Protection Enhancement on Aluminum Alloy And Magnesium Alloy by Mo-CeO2 conversion coating. Moroc. J. Chem. 2021, 9, 386–393. [Google Scholar]
- Jacobson, G.A. NACE International’s IMPACT Study Breaks New Ground in Corrosion Management Research and Practice. Bridge 2016, 46, 30–38. [Google Scholar]
- Zakeri, A.; Bahmani, E.; Aghdam, A.S.R. Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corros. Commun. 2022, 5, 25–38. [Google Scholar] [CrossRef]
- El Azzouzi, M.; Azzaoui, K.; Warad, I.; Hammouti, B.; Shityakov, S.; Sabbahi, R.; Saoiabi, S.; Youssoufi, M.; Akartasse, N.; Jodeh, S. Moroccan, Mauritania, and senegalese gum Arabic variants as green corrosion inhibitors for mild steel in HCl: Weight loss, electrochemical, AFM and XPS studies. J. Mol. Liq. 2022, 347, 118354. [Google Scholar] [CrossRef]
- Arrousse, N.; Mabrouk, E.; Salim, R.; El Hajjaji, F.; Rais, Z.; Taleb, M.; Hammouti, B. Fluorescein as commercial and environmentally friendly inhibitor against corrosion of mild steel in molar hydrochloric acid medium. Mater. Today Proc. 2020, 27, 3184–3192. [Google Scholar] [CrossRef]
- Berrissoul, A.; Ouarhach, A.; Benhiba, F.; Romane, A.; Guenbour, A.; Outada, H.; Dafali, A.; Zarrouk, A. Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J. Mol. Liq. 2022, 349, 118102. [Google Scholar] [CrossRef]
- Hamdani, I.; Chikri, M.; Fethi, F.; Salhi, A.; Bouyanzer, A.; Zarrouk, A.; Hammouti, B.; Costa, J.; Desjobert, J. Essential Oil Mentha suaveolens L: Chemical Composition, Anticorrosive Properties on Mild Steel in 0.5 M H2SO4 and Chemometric Approach. J. Mater. Environ. Sci. 2017, 8, 526–538. [Google Scholar]
- Mokhtari, O.; Hamdani, I.; Chetouani, A.; Lahrach, A.; El Halouani, H.; Aouniti, A.; Berrabah, M. Inhibition of steel corrosion in 1M HCl by Jatropha curcas oil. J. Mater. Environ. Sci. 2014, 5, 310–319. [Google Scholar]
- Elmsellem, H.; Ouadi, Y.E.; Mokhtari, M.; Bendaif, H.; Steli, H.; Aouniti, A.; Almehdi, A.M.; Abdel-Rahman, I.; Kusuma, H.S.; Hammouti, B. A natural antioxidant and an environmentally friendly inhibitor of mild steel corrosion: A commercial oil of basil (Ocimum basilicum L.). J. Chem. Technol. Metall. 2019, 54. [Google Scholar]
- Laaroussi, H.; Aouniti, A.; Hafez, B.; Mokhtari, O.; Sheikh, R.A.; Hamdani, I.; Rahhou, I.; Loukili, E.H.; Belbachir, C.; Hammouti, B.; et al. Argan leaves aqueous extract’s antioxidant activity and mild steel corrosion inhibition ability. Int. J. Corros. Scale Inhib. 2022, 11, 1539–1556. [Google Scholar] [CrossRef]
- Mechqoq, H.; El Yaagoubi, M.; El Hamdaoui, A.; Momchilova, S.; Almeida, J.R.G.d.; Msanda, F.; El Aouad, N. Ethnobotany, phytochemistry and biological properties of Argan tree (Argania spinosa (L.) Skeels) (Sapotaceae)—A review. J. Ethnopharmacol. 2021, 281, 114528. [Google Scholar] [CrossRef]
- Loukili, E.; Abrigach, F.; Bouhrim, M.; Bnouham, M.; Fauconnier, M.-L.; Ramdani, M. Chemical composition and physicochemical analysis of Opuntia dillenii extracts grown in Morocco. J. Chem. 2021, 2021, 8858929. [Google Scholar] [CrossRef]
- Radovici, O. Proceedings of the Second European Symposium on Corrosion Inhibitors, Ferrara, Italy; U.S. Department of Energy: Ferrara, Italy, 1965; p. 178.
- Fekkar, G.; Yousfi, F.; Elmsellem, H.; Aiboudi, M.; Ramdani, M.; Abdel-Rahman, I.; Hammouti, B.; Bouyazza, L. Eco-friendly Chamaerops humilis L. fruit extract corrosion inhibitor for mild steel in 1 M HCl. Int. J. Corros. Scale Inhib. 2020, 9, 446–459. [Google Scholar] [CrossRef]
- Filali, M.; El Hadrami, E.; Bentama, A.; Hafez, B.; Abdel-Rahman, I.; Harrach, A.; Elmsellem, H.; Hammouti, B.; Mokhtari, M.; Stiriba, S. 3, 6-Di (pyridin-2-yl) pyridazine derivatives as original and new corrosion inhibitors in support of mild steel: Experimental studies and DFT investigational. Int. J. Corros. Scale Inhib. 2019, 8, 93–109. [Google Scholar]
- Benabdellah, M.; Yahyi, A.; Dafali, A.; Aouniti, A.; Hammouti, B.; Ettouhami, A. Corrosion inhibition of steel in molar HCl by triphenyltin2–thiophene carboxylate. Arab. J. Chem. 2011, 4, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Herrag, L.; Hammouti, B.; Elkadiri, S.; Aouniti, A.; Jama, C.; Vezin, H.; Bentiss, F. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corros. Sci. 2010, 52, 3042–3051. [Google Scholar] [CrossRef]
- Radi, A.; El Mahi, B.; Aouniti, A.; El Massoudi, M.; Radi, S.; Kaddouri, M.; Chelfi, T.; Jmiai, A.; El Asri, A.; Hammouti, B. Mitigation effect of novel bipyrazole ligand and its copper complex on the corrosion behavior of steel in HCl: Combined experimental and computational studies. Chem. Phys. Lett. 2022, 795, 139532. [Google Scholar] [CrossRef]
- Attabi, S.; Mokhtari, M.; Taibi, Y.; Abdel-Rahman, I.; Hafez, B.; Elmsellem, H. Electrochemical and tribological behavior of surface-treated titanium alloy Ti–6Al–4V. J. Bio-Tribo-Corros. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- El Aatiaoui, A.; Koudad, M.; Chelfi, T.; Erkan, S.; Azzouzi, M.; Aouniti, A.; Savaş, K.; Kaddouri, M.; Benchat, N.; Oussaid, A. Experimental and theoretical study of new Schiff bases based on imidazo (1, 2-a) pyridine as corrosion inhibitor of mild steel in 1M HCl. J. Mol. Struct. 2021, 1226, 129372. [Google Scholar] [CrossRef]
- Benzai, A.; Derridj, F.; Mouadili, O.; El Azzouzi, M.; Kaddouri, M.; Cherrak, K.; Touzani, R.; Aouniti, A.; Hammouti, B.; Elatki, R. Anti-corrosive properties and quantum chemical studies of (benzoxazol) derivatives on mild steel in HCl (1 M). Port. Electrochim. Acta 2021, 39, 129–147. [Google Scholar] [CrossRef]
- Zimila, H.E.; Matsinhe, A.L.; Malayika, E.; Sulemane, Á.I.; Saete, V.N.C.; Rugunate, S.C.; Cumbane, P.J.; Magaia, I.; Munyemana, F. Phytochemical analysis and in vitro antioxidant and antimicrobial activities of hydroalcoholic extracts of the leaves of Salacia kraussii. Biocatal. Agric. Biotechnol. 2020, 30, 101862. [Google Scholar] [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Charrouf, M.H. Contribution à l’Etude Chimique de l’Huile d’Argania spinosa(L.) (Sapotaceae). Ph.D Thesis, Université de Perpignan, Perpignan, France, 1984. [Google Scholar]
- Guillaume, D.; Charrouf, Z. Argan oil and other argan products: Use in dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar] [CrossRef]
- Thakur, A.; Kaya, S.; Abousalem, A.S.; Sharma, S.; Ganjoo, R.; Assad, H.; Kumar, A. Computational and experimental studies on the corrosion inhibition performance of an aerial extract of Cnicus Benedictus weed on the acidic corrosion of mild steel. Process Saf. Environ. Prot. 2022, 161, 801–818. [Google Scholar] [CrossRef]
- Tang, L.; Li, X.; Si, Y.; Mu, G.; Liu, G. The synergistic inhibition between 8-hydroxyquinoline and chloride ion for the corrosion of cold rolled steel in 0.5 M sulfuric acid. Mater. Chem. Phys. 2006, 95, 29–38. [Google Scholar] [CrossRef]
- Mu, G.N.; Li, X.; Li, F. Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid. Mater. Chem. Phys. 2004, 86, 59–68. [Google Scholar] [CrossRef]
- Hafez, B.; Mokhtari, M.; Elmsellem, H.; Steli, H. Environmentally friendly inhibitor of the corrosion of mild steel: Commercial oil of Eucalyptus. Int. J. Corros. Scale Inhib. 2019, 8, 573–585. [Google Scholar] [CrossRef]
- Jeroundi, D.; Chakroune, S.; Elmsellem, H.; El Hadrami, E.; Ben-Tama, A.; Elyoussfi, A.; Dafali, A.; Douez, C.; Hafez, B. 2, 3-(2-alkylthio)-6, 7-bis (2-alkylthio) TTF: A new and green synthetic anti-corrosive inhibitors for mild steel in 1.0 HCl. J. Mater. Environ. Sci. 2018, 9, 334–344. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- el Hamdani, N.; Fdil, R.; Tourabi, M.; Jama, C.; Bentiss, F. Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and surface studies. Appl. Surf. Sci. 2015, 357, 1294–1305. [Google Scholar] [CrossRef]
- Afia, L.; Salghi, R.; Bazzi, E.H.; Zarrouk, A.; Hammouti, B.; Bouri, M.; Zarrouk, H.; Bazzi, L.; Bammou, L. Argan hulls extract: Green inhibitor of mild steel corrosion in 1 M HCl solution. Res. Chem. Intermed. 2012, 38, 1707–1717. [Google Scholar] [CrossRef]
- Hammouti, B.; Aouniti, A.; Taleb, M.; Brighli, M.; Kertit, S. L-methionine methyl ester hydrochloride as a corrosion inhibitor of iron in acid chloride solution. Corrosion 1995, 51. [Google Scholar] [CrossRef]
- Bouyanzer, A.; Hammouti, B.; Majidi, L. Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1 M HCl. Mater. Lett. 2006, 60, 2840–2843. [Google Scholar] [CrossRef]
- Tsuru, T.; Haruyama, S.; Gijutsu, B. Corrosion inhibition of iron by amphoteric surfactants in 2M HCl. J. Jpn. Soc. Corros. Eng. 1978, 27, 573–581. [Google Scholar]
- Mansfeld, F.; Kendig, M.; Tsai, S. Recording and analysis of AC impedance data for corrosion studies II. Experimental approach and results. Corrosion 1982, 38, 570–580. [Google Scholar] [CrossRef]
- Douche, D.; Elmsellem, H.; Anouar, E.H.; Guo, L.; Hafez, B.; Tüzün, B.; El Louzi, A.; Bougrin, K.; Karrouchi, K.; Himmi, B. Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. J. Mol. Liq. 2020, 308, 113042. [Google Scholar] [CrossRef]
- Mechbal, N.; Belghiti, M.; Benzbiria, N.; Lai, C.-H.; Kaddouri, Y.; Karzazi, Y.; Touzani, R.; Zertoubi, M. Correlation between corrosion inhibition efficiency in sulfuric acid medium and the molecular structures of two newly eco-friendly pyrazole derivatives on iron oxide surface. J. Mol. Liq. 2021, 331, 115656. [Google Scholar] [CrossRef]
- El Guerraf, A.; Titi, A.; Cherrak, K.; Mechbal, N.; El Azzouzi, M.; Touzani, R.; Hammouti, B.; Lgaz, H. The synergistic effect of chloride ion and 1, 5-diaminonaphthalene on the corrosion inhibition of mild steel in 0.5 M sulfuric acid: Experimental and theoretical insights. Surf. Interfaces 2018, 13, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Taşkın, H.; Süfer, Ö.; Attar, Ş.H.; Bozok, F.; Baktemur, G.; Büyükalaca, S.; Kafkas, N.E. Total phenolics, antioxidant activities and fatty acid profiles of six Morchella species. J. Food Sci. Technol. 2021, 58, 692–700. [Google Scholar] [CrossRef]
- Nengroo, Z.R.; Rauf, A. Fatty acid composition and antioxidant activities of five medicinal plants from Kashmir. Ind. Crops Prod. 2019, 140, 111596. [Google Scholar] [CrossRef]
- Martínez-Ceja, A.; Romero-Estrada, A.; Columba-Palomares, M.C.; Hurtado-Díaz, I.; Alvarez, L.; Teta-Talixtacta, R.; Sánchez-Ramos, M.; Cruz-Sosa, F.; Bernabé-Antonio, A. Anti-inflammatory, antibacterial and antioxidant activity of leaf and cell cultures extracts of Randia aculeata L. and its chemical components by GC-MS. S. Afr. J. Bot. 2022, 144, 206–218. [Google Scholar] [CrossRef]
- Getahun, T.; Sharma, V.; Gupta, N. Chemical composition, antibacterial and antioxidant activities of oils obtained by different extraction methods from Lepidium sativum L. seeds. Ind. Crops Prod. 2020, 156, 112876. [Google Scholar] [CrossRef]
- Khowdiary, M.M.; Taha, N.A.; Barqawi, A.A.; Elhenawy, A.A.; Sheta, M.; Hassan, N. Theoretical and experimental evaluation of the anticorrosion properties of new Coumarin’s derivatives. Alex. Eng. J. 2022, 61, 6937–6948. [Google Scholar] [CrossRef]
- Lee, H.; Nobe, K. Kinetics and mechanisms of Cu electrodissolution in chloride media. J. Electrochem. Soc. 1986, 133, 2035. [Google Scholar] [CrossRef]
- Deslouis, C.; Tribollet, B.; Mengoli, G.; Musiani, M.M. Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation. J. Appl. Electrochem. 1988, 18, 374–383. [Google Scholar] [CrossRef]
- D’Elia, E.; Barcia, O.E.; Mattos, O.R.; Pébère, N.; Tribollet, B. High-rate copper dissolution in hydrochloric acid solution. J. Electrochem. Soc. 1996, 143, 961. [Google Scholar] [CrossRef]
- Khowdiary, M.; El-Henawy, A.; Shawky, A.; Negm, N. Synthesis and evaluation of novel corrosion inhibitors utilized from the recycling of polyethylene terephthalate polymer: Gravimetric, electrochemical, quantum chemical modeling, and molecular docking studies. J. Mol. Liq. 2020, 320, 114504. [Google Scholar] [CrossRef]
- Elgendy, A.; Nady, H.; El-Rabiei, M.; Elhenawy, A.A. Understanding the adsorption performance of two glycine derivatives as novel and environmentally safe anti-corrosion agents for copper in chloride solutions: Experimental, DFT, and MC studies. RSC Adv. 2019, 9, 42120–42131. [Google Scholar] [CrossRef] [PubMed]
- Azgaou, K.; Damej, M.; El Hajjaji, S.; Sebbar, N.K.; Elmsellem, H.; El Ibrahimi, B.; Benmessaoud, M. Synthesis and characterization of N-(2-aminophenyl)-2-(5-methyl-1H-pyrazol-3-yl) acetamide (AMPA) and its use as a corrosion inhibitor for C38 steel in 1 M HCl. Experimental and theoretical study. J. Mol. Struct. 2022, 1266, 133451. [Google Scholar] [CrossRef]
- Toukal, L.; Belfennache, D.; Foudia, M.; Yekhlef, R.; Benghanem, F.; Hafez, B.; Elmsellem, H.; Abdel-Rahman, I. Inhibitory power of N, N-(1, 4-phenylene) bis (1-(4-nitrophenyl) methanimine) and the effect of the addition of potassium iodide on the corrosion inhibition of XC70 steel in HCl medium: Theoretical and experimental studies. Int. J. Corros. Scale Inhib 2022, 11, 438–464. [Google Scholar]
- Chkirate, K.; Azgaou, K.; Elmsellem, H.; el Ibrahimi, B.; Sebbar, N.K.; Benmessaoud, M.; El Hajjaji, S.; Essassi, E.M. Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl) methyl] benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. J. Mol. Liq. 2021, 321, 114750. [Google Scholar] [CrossRef]
- Jnoff, E.; Albrecht, C.; Barker, J.J.; Barker, O.; Beaumont, E.; Bromidge, S.; Brookfield, F.; Brooks, M.; Bubert, C.; Ceska, T. Binding mode and structure–activity relationships around direct inhibitors of the Nrf2–Keap1 complex. ChemMedChem 2014, 9, 699–705. [Google Scholar] [CrossRef]
- Tao, Z.; Zhang, S.; Li, W.; Hou, B. Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives. Corros. Sci. 2009, 51, 2588–2595. [Google Scholar] [CrossRef]
% (Area Calculations) | |||
---|---|---|---|
Compd. | RT | AO | HERA |
Myristic acid (C14:0) | 20.39 ± 0.02 | 0.69 ±0.13 | 0.24 ±0.07 |
Palmitoleic acid (C16:1) | 22.41 ± 0.03 | 0.41 ±0.09 | 0.15 ± 0.03 |
Palmitic acid (C16:0) | 22.62 ± 0.06 | 15.87 ± 0.17 | 15.37 ±0.41 |
Linoleic acid (C18:2 n-6) | 24.38 ± 0.08 | 60.55 ± 0.16 | 32.26 ± 0.33 |
Stearic acid (C18:0) | 24.64 ± 0.05 | 20.24 ± 0.17 | 5.14 ± 0.12 |
Concentration (g/L) | W (mg·cm−2·h−1) | CR (mm/year) | EI % | |
---|---|---|---|---|
Blank | - | 0.7436 | 8.3 | - |
AO | 0.06 | 0.3061 | 3.42 | 59.75 |
0.12 | 0.2619 | 2.92 | 65.83 | |
0.25 | 0.1758 | 1.96 | 76.19 | |
0.5 | 0.1443 | 1.61 | 81.42 | |
1 | 0.11 | 1.23 | 85.36 | |
2 | 0.0951 | 1.06 | 87.18 | |
HERA | 0.06 | 0.2878 | 3.21 | 61.22 |
0.12 | 0.2583 | 2.88 | 65.09 | |
0.25 | 0.2104 | 2.35 | 72.37 | |
0.5 | 0.177 | 1.98 | 76.28 | |
1 | 0.138 | 1.54 | 81.42 | |
2 | 0.1167 | 1.3 | 84.64 |
Ea (KJ·mol−1) | ΔHa0 (KJ·mol−1) | ΔSa0 (J·mol−1·K−1) | Kads | ΔGa0 (KJ·mol−1) | |
---|---|---|---|---|---|
Blank | 31.031 | 28.350 | −152.415 | -- | -- |
AO at 2 g/L | 67.407 | 64.726 | −50.682 | 21.8867 × 104 | −31.4871 |
HERA at 2 g/L | 61.343 | 58.662 | −68.586 | 19.9641 × 104 | −31.2516 |
Concentration (g/L) | Rs (Ω·cm2) | Rt (Ω·cm2) | fmax (Hz) | Cdl (µF/cm2) | E (%) | |
---|---|---|---|---|---|---|
Blank | - | 2.63 | 40.31 | 29.59 | 133.41 | - |
AO | 0.06 | 2.91 | 92.59 | 24.21 | 75.91 | 56.47 |
0.12 | 9.84 | 114.7 | 18.28 | 72.81 | 64.86 | |
0.25 | 3.68 | 152.5 | 15.44 | 70.99 | 73.57 | |
0.5 | 7.83 | 182.7 | 12.01 | 70.33 | 77.94 | |
1 | 6.19 | 187.2 | 12.09 | 67.68 | 78.47 | |
2 | 3.28 | 212.3 | 12.31 | 60.92 | 81.01 | |
HERA | 0.06 | 2.75 | 79.22 | 14.35 | 140.07 | 49.12 |
0.12 | 2.86 | 112.1 | 15.42 | 92.08 | 64.04 | |
0.25 | 2.80 | 122.9 | 19.55 | 77.72 | 67.20 | |
0.5 | 2.85 | 132.3 | 15.48 | 74.15 | 69.53 | |
1 | 2.97 | 138.6 | 15.28 | 66.24 | 70.92 | |
2 | 3.04 | 182.7 | 15.55 | 56.05 | 77.94 |
Concentration (g/L) | Ecorr (mV) | βc (mV/Dec) | βa (mV/Dec) | Icorr (mA/cm2) | E (%) | |
---|---|---|---|---|---|---|
Blank | - | −454 | −182.9 | 151.8 | 1.95 | - |
AO | 0.06 | −452 | −175.6 | 125.1 | 0.64 | 67.07 |
0.12 | −453.2 | −228.9 | 128.3 | 0.58 | 70.60 | |
0.25 | −462.8 | −270.1 | 189 | 0.55 | 71.94 | |
0.5 | −447.7 | −225.2 | 134.9 | 0.47 | 76.03 | |
1 | −454 | −213.2 | 137.1 | 0.32 | 83.44 | |
2 | −436 | −189.6 | 93.5 | 0.24 | 87.88 | |
HERA | 0.06 | −416.8 | −193.3 | 102.1 | 0.55 | 72.01 |
0.12 | −437.2 | −207 | 116.1 | 0.44 | 77.65 | |
0.25 | −435.7 | −138.6 | 104.9 | 0.37 | 80.75 | |
0.5 | −439.2 | −204.9 | 111.9 | 0.35 | 82.22 | |
1 | −438.6 | −156.5 | 107.1 | 0.34 | 82.52 | |
2 | −443.3 | −147.9 | 109.1 | 0.33 | 82.91 |
EC50 (μg/mL) | ||
---|---|---|
DPPH* assay | FRAP assay | |
AO | 3559.08 ± 161.75 | 1288.58 ± 169.21 |
HERA | 3621.43 ± 316.05 | 1655.86 ± 240.18 |
Quercetin | 38.62 ± 2.77 | 20.18 ± 2.23 |
Gallic Acid | 17.41 ± 2.15 | 17.01 ± 1.35 |
HOMO | LUMO | ΔG | DM | η | S | χ | I | A | EP | ωi | µ+ | µ– | ω– | ω+ | ΔEBD | ΔNmax | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Gas phase) | |||||||||||||||||
Myristic acid (C14:0) | −1.90 | −3.54 | 1.63 | 36.37 | 1.63 | 438.65 | 1.63 | −0.27 | −3.54 | −1.90 | 0.82 | 2.72 | 1.09 | 0.27 | 0.82 | −0.54 | −14.97 |
Palmitoleic acid (C16:1) | −1.63 | −4.35 | −2.72 | 32.07 | 1.09 | 685.45 | 1.09 | −0.27 | −2.45 | −1.36 | 0.54 | 1.90 | 0.82 | 0.27 | 0.54 | −0.27 | −15.78 |
Palmitic acid (C16:0) | −2.18 | −3.27 | −1.09 | 35.13 | 1.63 | 449.26 | 1.63 | −0.27 | −3.54 | −1.90 | 0.82 | 2.72 | 1.09 | 0.27 | 0.82 | −0.54 | −15.51 |
Linoleic acid (C18:2 n-6) | −2.45 | −3.54 | −1.09 | 33.21 | 1.63 | 427.49 | 1.63 | −0.27 | −3.81 | −1.90 | 0.82 | 2.72 | 1.09 | 0.27 | 0.82 | −0.54 | −15.51 |
Stearic acid (C18:0) | −1.66 | −4.90 | −3.24 | 24.58 | 0.82 | 777.70 | 0.82 | −0.27 | −2.18 | −1.09 | 0.54 | 1.63 | 0.54 | 0.27 | 0.54 | −0.27 | −16.05 |
(Aqueous Phase) | |||||||||||||||||
Myristic acid (C14:0) | −6.26 | −1.90 | 4.35 | 39.16 | 4.08 | 181.77 | 4.08 | 6.26 | −1.90 | 2.18 | 0.00 | −0.27 | −4.08 | 2.18 | 0.00 | −1.09 | −7.62 |
Palmitoleic acid (C16:1) | −6.80 | −0.54 | 6.26 | 39.16 | 3.54 | 217.42 | 3.54 | 6.26 | −0.54 | 2.72 | 0.82 | −1.09 | −4.63 | 2.99 | 0.82 | −0.82 | −11.16 |
Palmitic acid (C16:0) | −7.35 | −1.36 | 5.99 | 38.69 | 4.35 | 184.49 | 4.08 | 6.26 | −1.90 | 2.18 | 0.00 | −0.27 | −4.08 | 2.18 | 0.00 | −1.09 | −7.62 |
Linoleic acid (C18:2 n-6) | −5.71 | −1.63 | 4.08 | 37.09 | 4.63 | 185.31 | 4.08 | 6.26 | −1.90 | 2.18 | 0.00 | −0.27 | −4.08 | 2.18 | 0.00 | −1.09 | −7.62 |
Stearic acid (C18:0) | −7.62 | −0.27 | 7.35 | 28.38 | 3.27 | 228.30 | 3.27 | 6.26 | −0.27 | 2.99 | 1.09 | −1.36 | −4.63 | 3.27 | 1.09 | −0.82 | −12.52 |
Inhibitor Energy | Myristic Acid (C14:0) | Palmitoleic Acid (C16:1) | Palmitic Acid (C16:0) | Linoleic Acid (C18:2 n-6) | Stearic Acid (C18:0) |
---|---|---|---|---|---|
Total energy | −25.02 | −19.70 | −25.02 | −18.40 | −33.12 |
Adsorption energy | −3.50 | −4.178 | −4.50 | −5.17 | −4.99 |
Rigid adsorption energy | −37.70 | −35.64 | −71.01 | −40.14 | −49.68 |
dEad/dNi | −4.50 | −5.17 | −6.17 | −6.17 | −5.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laaroussi, H.; Aouniti, A.; Mokhtari, O.; Hafez, B.; Sheikh, R.A.; Sameeh, M.Y.; Khowdiary, M.M.; Alderhami, S.A.; Elhenawy, A.A.; Azzouzi, M.E.; et al. Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl. Appl. Sci. 2022, 12, 12641. https://doi.org/10.3390/app122412641
Laaroussi H, Aouniti A, Mokhtari O, Hafez B, Sheikh RA, Sameeh MY, Khowdiary MM, Alderhami SA, Elhenawy AA, Azzouzi ME, et al. Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl. Applied Sciences. 2022; 12(24):12641. https://doi.org/10.3390/app122412641
Chicago/Turabian StyleLaaroussi, Hamid, Abdelouahad Aouniti, Ouafae Mokhtari, Baraa Hafez, Ryan Adnan Sheikh, Manal Y. Sameeh, Manal M. Khowdiary, Suliman A. Alderhami, Ahmed A. Elhenawy, Mohamed El Azzouzi, and et al. 2022. "Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl" Applied Sciences 12, no. 24: 12641. https://doi.org/10.3390/app122412641
APA StyleLaaroussi, H., Aouniti, A., Mokhtari, O., Hafez, B., Sheikh, R. A., Sameeh, M. Y., Khowdiary, M. M., Alderhami, S. A., Elhenawy, A. A., Azzouzi, M. E., Rahhou, I., Belbachir, C., Hammouti, B., Hadda, T. B., & Elmsellem, H. (2022). Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl. Applied Sciences, 12(24), 12641. https://doi.org/10.3390/app122412641