Artificial-Intelligence-Based Methods for Structural Health Monitoring
1. Introduction
- Structural health monitoring;
- Deep learning;
- Artificial intelligence;
- Data analytics;
- Damage detection;
- System identification;
- Feature extraction;
- Machine learning;
- Sensor network;
- Intelligent infrastructure systems.
2. Contributions
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, N.; Liu, Y.; Noori, M.; Xiao, X. System Reliability Assessment of Cable-Supported Bridges under Stochastic Traffic Loads Based on Deep Belief Networks. Appl. Sci. 2020, 10, 8049. [Google Scholar] [CrossRef]
- Hou, S.; Dong, B.; Fan, J.; Wu, G.; Wang, H.; Han, Y.; Zhao, X. Variational Mode Decomposition Based Time-Varying Force Identification of Stay Cables. Appl. Sci. 2021, 11, 1254. [Google Scholar] [CrossRef]
- Ghiasi, R.; Noori, M.; Kuok, S.-C.; Silik, A.; Wang, T.; Pozo, F.; Altabey, W.A. Structural Assessment under Uncertain Parameters via the Interval Optimization Method Using the Slime Mold Algorithm. Appl. Sci. 2022, 12, 1876. [Google Scholar] [CrossRef]
- Ghiasi, R.; Noori, M.; Altabey, W.A.; Silik, A.; Wang, T.; Wu, Z. Uncertainty Handling in Structural Damage Detection via Non-Probabilistic Meta-Models and Interval Mathematics, a Data-Analytics Approach. Appl. Sci. 2021, 11, 770. [Google Scholar] [CrossRef]
- Shi, J.; Dang, J.; Cui, M.; Zuo, R.; Shimizu, K.; Tsunoda, A.; Suzuki, Y. Improvement of Damage Segmentation Based on Pixel-Level Data Balance Using VGG-Unet. Appl. Sci. 2021, 11, 518. [Google Scholar] [CrossRef]
- Hoskere, V.; Amer, F.; Friedel, D.; Yang, W.; Tang, Y.; Narazaki, Y.; Smith, M.D.; Golparvar-Fard, M.; Spencer, B.F., Jr. InstaDam: Open-Source Platform for Rapid Semantic Segmentation of Structural Damage. Appl. Sci. 2021, 11, 520. [Google Scholar] [CrossRef]
- Yazdchi, M.; Foroughi Asl, A.; Talatahari, S.; Gandomi, A.H. Evaluation of the Mechanical Properties of Normal Concrete Containing Nano-MgO under Freeze–Thaw Conditions by Evolutionary Intelligence. Appl. Sci. 2021, 11, 2529. [Google Scholar] [CrossRef]
- Muin, S.; Mosalam, K.M. Structural Health Monitoring Using Machine Learning and Cumulative Absolute Velocity Features. Appl. Sci. 2021, 11, 5727. [Google Scholar] [CrossRef]
- Gao, Y.; Mosalam, K.M.; Chen, Y.; Wang, W.; Chen, Y. Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames. Appl. Sci. 2021, 11, 6084. [Google Scholar] [CrossRef]
- Altabey, W.A.; Noori, M.; Wang, T.; Ghiasi, R.; Kuok, S.-C.; Wu, Z. Deep Learning-Based Crack Identification for Steel Pipelines by Extracting Features from 3D Shadow Modeling. Appl. Sci. 2021, 11, 6063. [Google Scholar] [CrossRef]
- Finotti, R.P.; Barbosa, F.d.S.; Cury, A.A.; Pimentel, R.L. Numerical and Experimental Evaluation of Structural Changes Using Sparse Auto-Encoders and SVM Applied to Dynamic Responses. Appl. Sci. 2021, 11, 11965. [Google Scholar] [CrossRef]
- Karaaslan, E.; Bagci, U.; Catbas, N. A Novel Decision Support System for Long-Term Management of Bridge Networks. Appl. Sci. 2021, 11, 5928. [Google Scholar] [CrossRef]
- Gong, F.; Han, F.; Wang, Y.; Xia, Y. Bridge Damping Extraction Method from Vehicle–Bridge Interaction System Using Double-Beam Model. Appl. Sci. 2021, 11, 10304. [Google Scholar] [CrossRef]
- Su, Y.; Liu, L.; Lei, Y. Structural Damage Identification Using a Modified Directional Bat Algorithm. Appl. Sci. 2021, 11, 6507. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, D.; Hou, J.; Jankowski, Ł.; Wang, H. Damage Identification Method Using Additional Virtual Mass Based on Damage Sparsity. Appl. Sci. 2021, 11, 10152. [Google Scholar] [CrossRef]
- Tang, S.; Chen, Z. Understanding Natural Disaster Scenes from Mobile Images Using Deep Learning. Appl. Sci. 2021, 11, 3952. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altabey, W.A.; Noori, M. Artificial-Intelligence-Based Methods for Structural Health Monitoring. Appl. Sci. 2022, 12, 12726. https://doi.org/10.3390/app122412726
Altabey WA, Noori M. Artificial-Intelligence-Based Methods for Structural Health Monitoring. Applied Sciences. 2022; 12(24):12726. https://doi.org/10.3390/app122412726
Chicago/Turabian StyleAltabey, Wael A., and Mohammad Noori. 2022. "Artificial-Intelligence-Based Methods for Structural Health Monitoring" Applied Sciences 12, no. 24: 12726. https://doi.org/10.3390/app122412726
APA StyleAltabey, W. A., & Noori, M. (2022). Artificial-Intelligence-Based Methods for Structural Health Monitoring. Applied Sciences, 12(24), 12726. https://doi.org/10.3390/app122412726