Sub-Diffraction Focusing Using Metamaterial-Based Terahertz Super-Oscillatory Lens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication
2.2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Al-Hourani, A.; Evans, R.; Farrell, P.; Moran, B.; Martorella, M.; Kandeepan, S.; Skafidas, S.; Parampalli, U. Millimeter-wave integrated radar systems and techniques. In Academic Press Library in Signal Processing; Academic Press: New York, NY, USA, 2018; Volume 7, pp. 317–363. [Google Scholar]
- Bin Sulaiman, R.; Kareem, A. A Review on Concepts and Technologies of 6G Cellular Network and Future Scope. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Dürig, U.; Pohl, D.W.; Rohner, F. Near-field optical scanning microscopy. J. Appl. Phys. 1986, 59, 3318. [Google Scholar] [CrossRef]
- Hunsche, S.; Koch, M.; Brener, I.; Nuss, M.C. THz near-field imaging. Opt. Commun. 1998, 150, 22–26. [Google Scholar] [CrossRef]
- Ishihara, K.; Ohashi, K.; Ikari, T.; Minamide, H.; Yokoyama, H.; Shikata, J.; Ito, H. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture. Appl. Phys. Lett. 2006, 89, 201120. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.C. Semiconductor dynamic aperture for nearfield terahertz wave imaging. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 608–614. [Google Scholar] [CrossRef]
- Bruce, M. Polarization contrast terahertz-near-field imaging of anisotropic conductors. Appl. Phys. Lett. 2007, 90, 082104. [Google Scholar]
- Liu, J.; Mendis, R.; Mittleman, D.M.; Sakoda, N. A tapered parallel plate-waveguide probe for THz near-field reflection imaging. Appl. Phys. Lett. 2012, 100, 031101. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.; Nagel, M.; Kurz, H. Tapered Sommerfeld wire terahertz near-field imaging. Appl. Phys. Lett. 2009, 94, 051107. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Yoshikiyo, M.; Imoto, K.; Nakagawa, K.; Namai, A.; Tokoro, H.; Yahagi, Y.; Takeuchi, K.; Jia, F.; Miyashita, S.; et al. Magnetic pole flip by millimeter wave. Adv. Mater. 2020, 32, 2004897. [Google Scholar] [CrossRef]
- Li, D.; Nakajima, M.; Tani, M.; Yang, J.; Kitahara, H.; Hashida, M.; Asakawa, M.; Liu, W.; Wei, Y.; Yang, Z. Terahertz Radiation from Combined Metallic Slit Arrays. Sci. Rep. 2019, 9, 6804. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Qiu, H.; Phan, T.N.K.; Kato, K.; Kang, B.; Takano, K.; Lu, Y.Q.; Chen, L.; Lv, P.; Yu, K.; et al. Visible Measurement of Terahertz Power Based on Capsulized Cholesteric Liquid Crystal Film. Appl. Sci. 2018, 8, 2580. [Google Scholar] [CrossRef]
- Agulto, V.C.; Toya, K.; Phan, T.N.K.; Mag-usara, V.K.; Li, J.; Empizo, M.J.F.; Iwamoto, T.; Goto, K.; Murakami, H.; Kumagai, Y.; et al. Anisotropic complex refractive index of β-Ga2O3 bulk and epilayer evaluated by terahertz time-domain spectroscopy. Appl. Phys. Lett. 2021, 118, 042101. [Google Scholar] [CrossRef]
- Agulto, V.C.; Iwamoto, T.; Kitahara, H.; Toya, K.; Mag-usara, V.K.; Imanishi, M.; Mori, Y.; Yoshimura, M.; Nakajima, M. Terahertz time-domain ellipsometry with high precision for the evaluation of GaN crystals with carrier densities up to 1020 cm−3. Sci. Rep. 2021, 11, 18129. [Google Scholar] [CrossRef]
- Fitzky, G.; Nakajima, M.; Koike, Y.; Leitenstorfer, A.; Kurihara, T. Ultrafast Control of Magnetic Anisotropy by Resonant Excitation of 4f Electrons and Phonons in Sm0.7Er0.3FeO3. Phys. Rev. Lett. 2021, 127, 107401. [Google Scholar] [CrossRef]
- Ota, M.; Kan, K.; Komada, S.; Wang, Y.; Agulto, V.; Mag-usara, V.K.; Arikawa, Y.; Asakawa, M.; Sakawa, Y.; Matsui, T.; et al. Ultrafast visualization of an electric field under the Lorentz transformation. Nat. Phys. 2022, 18, 1436–1440. [Google Scholar] [CrossRef]
- Tang, H.H.; Huang, T.J.; Liu, J.Y.; Tan, Y.; Liu, P.K. Tunable Terahertz Deep Subwavelength Imaging Based on a Graphene Monolayer. Sci. Rep. 2017, 7, 46283. [Google Scholar] [CrossRef] [Green Version]
- Heggie, T.J.; Naylor, D.A.; Gom, B.G.; Bordatchev, E.V. Enhanced transmission and beam confinement using bullseye plasmonic lenses at THz frequencies. In Proceedings of the SPIE 8985, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, San Francisco, CA, USA, 7 March 2014; p. 89851G. [Google Scholar]
- Neu, J.; Krolla, B.; Paul, O.; Reinhard, B.; Beigang, R.; Rahm, M. Metamaterial-based gradient index lens with strong focusing in the THz frequency range. Opt. Express 2010, 18, 27748–27757. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ye, J.; Wang, X.; Kan, Q.; Zhang, Y. A broadband terahertz ultrathin multi-focus lens. Sci. Rep. 2016, 6, 28800. [Google Scholar] [CrossRef]
- Ruan, D.; Li, Z.; Du, L.; Zhou, X.; Zhu, L.; Lin, C.; Yang, M.; Chen, G.; Yuan, W.; Liang, G.; et al. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array. Appl. Opt. 2018, 57, 7905–7909. [Google Scholar] [CrossRef]
- Iba, A.; Domier, C.W.; Ikeda, M.; Mase, A.; Nakajima, M.; Pham, A.V.; Luhmann, N.C. Subdiffraction focusing with a longfocallength using a terahertz-wave super-oscillatory lens. Opt. Lett. 2021, 46, 4912–4915. [Google Scholar] [CrossRef]
- Iba, A.; Ikeda, M.; Agulto, V.C.; Mag-Usara, V.K.; Nakajima, M. A Study of Terahertz-Wave Cylindrical Super-Oscillatory Lens for Industrial Applications. Sensors 2021, 21, 6732. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V.; Popescu, S. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 2006, 39, 6965–6977. [Google Scholar] [CrossRef]
- Huang, F.M.; Zheludev, N.; Chen, Y.; de Abajo, F.J.G. Focusing of light by a nanohole array. Appl. Phys. Lett. 2007, 90, 091119. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.T.F.; Lindberg, J.; Roy, T.; Savo, S.; Chad, J.E.; Dennis, M.R.; Zheludev, N.I. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 2012, 11, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Rogers, E.T.F.; Roy, T.; Adamo, G.; Shen, Z.; Zheludev, N.I. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci. Rep. 2014, 4, 6333. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.T.F.; Savo, S.; Lindberg, J.; Roy, T.; Dennis, M.R.; Zheludev, N.I. Super-oscillatory optical needle. Appl. Phys. Lett. 2013, 102, 031108. [Google Scholar] [CrossRef]
- Zheludev, N. What diffraction limit? Nat. Mater. 2008, 7, 420–422. [Google Scholar] [CrossRef]
- Roy, T.; Rogers, E.T.F.; Zheludev, N.I. Sub-wavelength focusing meta-lens. Opt. Express 2013, 21, 7577–7582. [Google Scholar] [CrossRef] [Green Version]
- Talbot, H.F. Facts relating to optical science. no. IV. Philos. Mag. Lett. 1836, 9, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Zhang, C.; Feng, L.; Yang, Y. Three-Dimensional Planar Metallic Lenses Based on Concentric Rings with Modulated Subwavelength Width. J. Electromagn. Anal. Appl. 2012, 4, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Urey, H. Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams. Appl. Opt. 2004, 43, 620–625. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iba, A.; Ikeda, M.; Mag-usara, V.K.; Agulto, V.C.; Nakajima, M. Sub-Diffraction Focusing Using Metamaterial-Based Terahertz Super-Oscillatory Lens. Appl. Sci. 2022, 12, 12770. https://doi.org/10.3390/app122412770
Iba A, Ikeda M, Mag-usara VK, Agulto VC, Nakajima M. Sub-Diffraction Focusing Using Metamaterial-Based Terahertz Super-Oscillatory Lens. Applied Sciences. 2022; 12(24):12770. https://doi.org/10.3390/app122412770
Chicago/Turabian StyleIba, Ayato, Makoto Ikeda, Valynn Katrine Mag-usara, Verdad C. Agulto, and Makoto Nakajima. 2022. "Sub-Diffraction Focusing Using Metamaterial-Based Terahertz Super-Oscillatory Lens" Applied Sciences 12, no. 24: 12770. https://doi.org/10.3390/app122412770
APA StyleIba, A., Ikeda, M., Mag-usara, V. K., Agulto, V. C., & Nakajima, M. (2022). Sub-Diffraction Focusing Using Metamaterial-Based Terahertz Super-Oscillatory Lens. Applied Sciences, 12(24), 12770. https://doi.org/10.3390/app122412770