GIS-Based Wind and Solar Power Assessment in Central Mexico
Abstract
:1. Introduction
- (1)
- Reactivation and development of power plants of the CFE.
- (2)
- Guaranteeing universal access to electricity, thus contributing to the country’s economic growth in quality conditions.
- (3)
- Compliance with the environmental commitments contracted with international bodies regarding reducing emissions and climate change, for which the increase of electricity generation through clean and renewable energy is proposed.
2. Materials and Methods
2.1. Elevation
2.2. Kriging Interpolation
- Raster type layers, obtained from INEGI, are products that represent the elevations of the Mexican continental territory by means of values that indicate points on the terrain surface whose geographic location is defined by coordinates (X,Y), to which values representing the elevations (Z) are integrated. The points are regularly spaced and distributed with a resolution of 15 m × 15 m.
- The data used are divided in two. The wind data that are obtained by MERRA-2 are from reanalysis provided by NASA; these data are downloaded with *.tab format. The irradiance data are obtained with the AWS installed within the states of Central Mexico; however, AWS were used outside the Central zone to avoid erroneous interpolation. These data have the extension *.CSV.
- Both the rasters and the *.tab and *.CSV files are loaded into a geographic information system, and the Lambert Conformal Conic projected coordinate system for Mexico is used.
- Arctoolbox and Spatial Analyst Tools are used to interpolate with kriging.
- The maps are trimmed and analyzed.
3. Results
3.1. Solar Global Resources Assessment
3.2. Wind Resources Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRENA—International Renewable Energy Agency. Available online: https://www.irena.org/ (accessed on 6 November 2022).
- Secretaría de Energía. PRODESEN 2020—2034. Available online: http://www.gob.mx/sener/articulos/prodesen-2020-2034 (accessed on 6 November 2022).
- Centro Nacional de Control de Energía. Programa para el Desarrollo del Sistema Eléctrico Nacional 2021–2035. Available online: http://www.gob.mx/cenace/documentos/programa-para-el-desarrollo-del-sistema-electrico-nacional-276178 (accessed on 6 November 2022).
- Secretaría de Energía. PRODESEN 2019—2033. Available online: http://www.gob.mx/sener/articulos/prodesen-2019-2033-221654 (accessed on 6 November 2022).
- Renewable Capacity Statistics 2022. Available online: https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 (accessed on 6 November 2022).
- Global Energy Transformation: A Roadmap to 2050 (2019 Edition). Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 6 November 2022).
- Mexico—Renewable Energy. Available online: https://www.trade.gov/country-commercial-guides/mexico-renewable-energy (accessed on 6 November 2022).
- The Power to Change Solar and Wind Cost Reduction Potential to 2025. Available online: https://www.irena.org/publications/2016/Jun/The-Power-to-Change-Solar-and-Wind-Cost-Reduction-Potential-to-2025 (accessed on 6 November 2022).
- Rahman, M.M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of Energy Storage Technologies: A Review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Menghwani, V.; Zerriffi, H.; Korkovelos, A.; Khavari, B.; Sahlberg, A.; Howells, M.; Mentis, D. Planning with Justice: Using Spatial Modelling to Incorporate Justice in Electricity Pricing–The Case of Tanzania. Appl. Energy 2020, 264, 114749. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Wu, C.; He, F.; Zhang, B.; Liu, F. A Geographical Information System Based Multi-Criteria Decision-Making Approach for Location Analysis and Evaluation of Urban Photovoltaic Charging Station: A Case Study in Beijing. Energy Convers. Manag. 2020, 205, 112340. [Google Scholar] [CrossRef]
- Kılıç, B. Determination of Wind Dissipation Maps and Wind Energy Potential in Burdur Province of Turkey Using Geographic Information System (GIS). Sustain. Energy Technol. Assess. 2019, 36, 100555. [Google Scholar] [CrossRef]
- Zahedi, R.; Ghorbani, M.; Daneshgar, S.; Gitifar, S.; Qezelbigloo, S. Potential Measurement of Iran’s Western Regional Wind Energy Using GIS. J. Clean. Prod. 2022, 330, 129883. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-Criteria Decision Support System for Wind Farm Site Selection Using GIS. Sustain. Energy Technol. Assess. 2016, 13, 38–50. [Google Scholar] [CrossRef]
- Feng, J.; Feng, L.; Wang, J.; King, C.W. Evaluation of the Onshore Wind Energy Potential in Mainland China—Based on GIS Modeling and EROI Analysis. Resour. Conserv. Recycl. 2020, 152, 104484. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Lamas-Galdo, M.I.; Filgueira-Vizoso, A. Managing the Oceans: Site Selection of a Floating Offshore Wind Farm Based on GIS Spatial Analysis. Mar. Policy 2020, 113, 103803. [Google Scholar] [CrossRef]
- Nematollahi, O.; Alamdari, P.; Jahangiri, M.; Sedaghat, A.; Alemrajabi, A.A. A Techno-Economical Assessment of Solar/Wind Resources and Hydrogen Production: A Case Study with GIS Maps. Energy 2019, 175, 914–930. [Google Scholar] [CrossRef]
- Soha, T.; Munkácsy, B.; Harmat, Á.; Csontos, C.; Horváth, G.; Tamás, L.; Csüllög, G.; Daróczi, H.; Sáfián, F.; Szabó, M. GIS-Based Assessment of the Opportunities for Small-Scale Pumped Hydro Energy Storage in Middle-Mountain Areas Focusing on Artificial Landscape Features. Energy 2017, 141, 1363–1373. [Google Scholar] [CrossRef]
- Pillot, B.; Al-Kurdi, N.; Gervet, C.; Linguet, L. An Integrated GIS and Robust Optimization Framework for Solar PV Plant Planning Scenarios at Utility Scale. Appl. Energy 2020, 260, 114257. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lenzen, M.; Wang, D.; Nansai, K. GIS-Based Modelling of Electric-Vehicle-Grid Integration in a 100% Renewable Electricity Grid. Appl. Energy 2020, 262, 114577. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yu, H.; Li, J.; Xie, Y.; Lei, Z. Geothermal Resource Potential Assessment of Fujian Province, China, Based on Geographic Information System (GIS)-Supported Models. Renew. Energy 2020, 153, 564–579. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, L.; Lu, Y.; Zhang, M.; Qin, W.; Wang, S.; Wang, L. Potential Assessment of Photovoltaic Power Generation in China. Renew. Sustain. Energy Rev. 2022, 154, 111900. [Google Scholar] [CrossRef]
- Settou, B.; Settou, N.; Gahrar, Y.; Negrou, B.; Bouferrouk, A.; Gouareh, A.; Mokhtara, C. Geographic Information-Driven Two-Stage Optimization Model for Location Decision of Solar Power Plant: A Case Study of an Algerian Municipality. Sustain. Cities Soc. 2022, 77, 103567. [Google Scholar] [CrossRef]
- Villacreses, G.; Martínez-Gómez, J.; Jijón, D.; Cordovez, M. Geolocation of Photovoltaic Farms Using Geographic Information Systems (GIS) with Multiple-Criteria Decision-Making (MCDM) Methods: Case of the Ecuadorian Energy Regulation. Energy Rep. 2022, 8, 3526–3548. [Google Scholar] [CrossRef]
- Yushchenko, A.; De Bono, A.; Chatenoux, B.; Patel, M.K.; Ray, N. GIS-Based Assessment of Photovoltaic (PV) and Concentrated Solar Power (CSP) Generation Potential in West Africa. Renew. Sustain. Energy Rev. 2018, 81, 2088–2103. [Google Scholar] [CrossRef]
- Aly, A.; Jensen, S.S.; Pedersen, A.B. Solar Power Potential of Tanzania: Identifying CSP and PV Hot Spots through a GIS Multicriteria Decision Making Analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Elboshy, B.; Alwetaishi, M.; Aly, R.M.; Zalhaf, A.S. A Suitability Mapping for the PV Solar Farms in Egypt Based on GIS-AHP to Optimize Multi-Criteria Feasibility. Ain Shams Eng. J. 2022, 13, 101618. [Google Scholar] [CrossRef]
- Giamalaki, M.; Tsoutsos, T. Sustainable Siting of Solar Power Installations in Mediterranean Using a GIS/AHP Approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- Dehshiri, S.S.H.; Dehshiri, S.J.H. Locating Wind Farm for Power and Hydrogen Production Based on Geographic Information System and Multi-Criteria Decision Making Method: An Application. Int. J. Hydrog. Energy 2022, 47, 24569–24583. [Google Scholar] [CrossRef]
- Saraswat, S.; Digalwar, A.K.; Yadav, S.; Kumar, G. MCDM and GIS Based Modelling Technique for Assessment of Solar and Wind Farm Locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Merrouni, A.A.; Elalaoui, F.E.; Mezrhab, A.; Mezrhab, A.; Ghennioui, A. Large Scale PV Sites Selection by Combining GIS and Analytical Hierarchy Process. Case Study: Eastern Morocco. Renew. Energy 2018, 119, 863–873. [Google Scholar] [CrossRef]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal Site Selection for Solar Photovoltaic (PV) Power Plants Using GIS and AHP: A Case Study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Mensour, O.N.; El Ghazzani, B.; Hlimi, B.; Ihlal, A. A Geographical Information System-Based Multi-Criteria Method for the Evaluation of Solar Farms Locations: A Case Study in Souss-Massa Area, Southern Morocco. Energy 2019, 182, 900–919. [Google Scholar] [CrossRef]
- Asakereh, A.; Soleymani, M.; Sheikhdavoodi, M.J. A GIS-Based Fuzzy-AHP Method for the Evaluation of Solar Farms Locations: Case Study in Khuzestan Province, Iran. Sol. Energy 2017, 155, 342–353. [Google Scholar] [CrossRef]
- Nagababu, G.; Puppala, H.; Pritam, K.; Kantipudi, M.P. Two-Stage GIS-MCDM Based Algorithm to Identify Plausible Regions at Micro Level to Install Wind Farms: A Case Study of India. Energy 2022, 248, 123594. [Google Scholar] [CrossRef]
- Sindhu, S.; Nehra, V.; Luthra, S. Investigation of Feasibility Study of Solar Farms Deployment Using Hybrid AHP-TOPSIS Analysis: Case Study of India. Renew. Sustain. Energy Rev. 2017, 73, 496–511. [Google Scholar] [CrossRef]
- Gil-García, I.C.; Ramos-Escudero, A.; García-Cascales, M.S.; Dagher, H.; Molina-García, A. Fuzzy GIS-Based MCDM Solution for the Optimal Offshore Wind Site Selection: The Gulf of Maine Case. Renew. Energy 2022, 183, 130–147. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Senani, A.G.; Fadaei, A.; Simaee, M.; Moltames, R. A Framework for GIS-Based Site Selection and Technical Potential Evaluation of PV Solar Farm Using Fuzzy-Boolean Logic and AHP Multi-Criteria Decision-Making Approach. Renew. Energy 2022, 186, 89–104. [Google Scholar] [CrossRef]
- Messaoudi, D.; Settou, N.; Negrou, B.; Rahmouni, S.; Settou, B.; Mayou, I. Site Selection Methodology for the Wind-Powered Hydrogen Refueling Station Based on AHP-GIS in Adrar, Algeria. Energy Procedia 2019, 162, 67–76. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.; Odigie, O.; Munda, J.L. A Multi-Criteria GIS Based Model for Wind Farm Site Selection Using Interval Type-2 Fuzzy Analytic Hierarchy Process: The Case Study of Nigeria. Appl. Energy 2018, 228, 1853–1869. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System Methodology for Selecting Wind Farm Installation Locations Using AHP and TOPSIS: Case Study in Eastern Macedonia and Thrace Region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D.J. Wind Farms Suitability Location Using Geographical Information System (GIS), Based on Multi-Criteria Decision Making (MCDM) Methods: The Case of Continental Ecuador. Renew. Energy 2017, 109, 275–286. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Zheng, L.; Cui, L.; Li, S.; Li, W.; Cai, Y. Site Selection of Wind Farms Using GIS and Multi-Criteria Decision Making Method in Wafangdian, China. Energy 2020, 207, 118222. [Google Scholar] [CrossRef]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS Based Site Suitability Assessment for Wind and Solar Farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- Diez-Rodríguez, J.J.; Fischer, T.B.; Di Zio, S. Introducing a Group Spatial Decision Support System for Use in Strategic Environmental Assessment of Onshore Wind Farm Development in Mexico. J. Clean. Prod. 2019, 220, 1239–1254. [Google Scholar] [CrossRef]
- Canul-Reyes, D.; Rodríguez-Hernández, O.; Jarquin-Laguna, A. Potential Zones for Offshore Wind Power Development in the Gulf of Mexico Using Reanalyses Data and Capacity Factor Seasonal Analysis. Energy Sustain. Dev. 2022, 68, 211–219. [Google Scholar] [CrossRef]
- Hernández-Fontes, J.V.; Martínez, M.L.; Wojtarowski, A.; González-Mendoza, J.L.; Landgrave, R.; Silva, R. Is Ocean Energy an Alternative in Developing Regions? A Case Study in Michoacan, Mexico. J. Clean. Prod. 2020, 266, 121984. [Google Scholar] [CrossRef]
- Arenas-López, J.P.; Badaoui, M. Analysis of the Offshore Wind Resource and Its Economic Assessment in Two Zones of Mexico. Sustain. Energy Technol. Assess. 2022, 52, 101997. [Google Scholar] [CrossRef]
- Rosas-Flores, J.A.; Zenón-Olvera, E.; Gálvez, D.M. Potential Energy Saving in Urban and Rural Households of Mexico with Solar Photovoltaic Systems Using Geographical Information System. Renew. Sustain. Energy Rev. 2019, 116, 109412. [Google Scholar] [CrossRef]
- Valenzuela-Domínguez, F.A.; Santa Cruz, L.A.; Enríquez-Velásquez, E.A.; Félix-Herrán, L.C.; Benitez, V.H.; Lozoya-Santos, J.d.-J.; Ramírez-Mendoza, R.A. Solar Irradiation Evaluation through Gis Analysis Based on Grid Resolution and a Mathematical Model: A Case Study in Northeast Mexico. Energies 2021, 14, 6427. [Google Scholar] [CrossRef]
- Centro Nacional de Control de Energía | Gobierno | Gob.Mx. Available online: https://www.gob.mx/cenace (accessed on 6 November 2022).
- Instituto Nacional de Estadística y Geografía (INEGI). Available online: https://www.inegi.org.mx/ (accessed on 22 May 2022).
- Estaciones Meteorológicas Automáticas (EMA’s). Available online: https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s (accessed on 6 November 2022).
- Oliver, M.A.; Webster, R. Kriging: A Method of Interpolation for Geographical Information Systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Canales, F.A.; Payares-Fontalvo, M.; Florez-Guerra, H.; Acuña, G.J. Chapter 4—Geographic Information Systems (GIS) Tools in Complementarity Research—Estimation and Visualization. In Complementarity of Variable Renewable Energy Sources; Jurasz, J., Beluco, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 81–99. ISBN 978-0-323-85527-3. [Google Scholar]
- Bessafi, M.; Morel, B.; Lan-Sun-Luk, J.-D.; Chabriat, J.-P.; Jeanty, P. A Method for Mapping Monthly Solar Irradiation over Complex Areas of Topography: Réunion Island’s Case Study. In Climate-Smart Technologies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 295–306. [Google Scholar]
- Alsamamra, H.; Ruiz-Arias, J.A.; Pozo-Vázquez, D.; Tovar-Pescador, J. A Comparative Study of Ordinary and Residual Kriging Techniques for Mapping Global Solar Radiation over Southern Spain. Agric. For. Meteorol. 2009, 149, 1343–1357. [Google Scholar] [CrossRef]
2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
298,791.7 | 309,727 | 318,236 | 324,927 | 315,968 |
Technology | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
Hydropower | 12,642 | 12,642 | 12,671 | 12,671 | 12,671 |
Wind | 4199 | 4876 | 6050 | 6504 | 7692 |
Solar | 1126 | 2555 | 4440 | 5163 | 7040 |
Bioenergy | 1027 | 1109 | 1014 | 1016 | 1064 |
Geothermal | 926 | 951 | 951 | 951 | 976 |
State | Population |
---|---|
Aguascalientes | 1,425,607 |
Guanajuato | 6,166,934 |
Queretaro | 2,368,467 |
Zacatecas | 1,622,138 |
San Luis Potosi | 2,822,255 |
Morelos | 1,971,520 |
Hidalgo | 3,082,841 |
Mexico City | 9,209,944 |
Puebla | 6,583,278 |
State of Mexico | 16,992,418 |
Tlaxcala | 1,342,977 |
Resource | State | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mexico City | Morelos | Hidalgo | Puebla | Queretaro | Guanajuato | Aguascalientes | San Luis Potosi | Zacatecas | |
Solar (kWh/m2/day) | 5.89 | 5.89 | 5.89 | 5.39 | 5.60 | 5.59 | 5.40 | 5.39 | 5.40 |
Wind (W/m2) | 4.00 | 4.00 | 134 | 517 | 135 | 261 | 72 | 135 | 135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Escobedo, Q.; Franco, J.A.; Perea-Moreno, A.-J. GIS-Based Wind and Solar Power Assessment in Central Mexico. Appl. Sci. 2022, 12, 12800. https://doi.org/10.3390/app122412800
Hernandez-Escobedo Q, Franco JA, Perea-Moreno A-J. GIS-Based Wind and Solar Power Assessment in Central Mexico. Applied Sciences. 2022; 12(24):12800. https://doi.org/10.3390/app122412800
Chicago/Turabian StyleHernandez-Escobedo, Quetzalcoatl, Jesus Alejandro Franco, and Alberto-Jesus Perea-Moreno. 2022. "GIS-Based Wind and Solar Power Assessment in Central Mexico" Applied Sciences 12, no. 24: 12800. https://doi.org/10.3390/app122412800
APA StyleHernandez-Escobedo, Q., Franco, J. A., & Perea-Moreno, A. -J. (2022). GIS-Based Wind and Solar Power Assessment in Central Mexico. Applied Sciences, 12(24), 12800. https://doi.org/10.3390/app122412800