Mechanical Behaviour of a Metal-CFRP-Hybrid Structure and Its Components under Quasi-Static and Dynamic Load at Elevated Temperature
Abstract
:1. Introduction
1.1. Intrinsic Metal-CFRP-Hybrids
1.2. Mechanical Behaviour at Elevated Temperatures
1.3. Research Significance
2. Materials and Methods
2.1. Examined Specimens
2.2. Thermography
2.3. Thermoelastic Effect
2.4. Lock-in Thermography
2.5. X-ray Microtomography
2.6. Experimental Set-Up
3. Results
3.1. Quasi-Static Testing
3.2. Dynamical Testing
4. Discussion
5. Conclusions and Outlook
- In the quasistatic experiments, the elevated temperature (60 °C) leads to a small decrease in the sustained maximum force of the single material without affecting the sustained maximum force of the hybrid specimen significantly. Nonetheless, a difference in occurring damage is observed for the hybrid. While there are abrupt damage events at 23 °C, there is a smoother damage progression at 60 °C, which goes along with a significant increase in displacement at failure for the elevated temperature.
- In the dynamic experiments, the initial dynamical stiffness of all specimen types decreases at elevated temperatures. The sustained cycles of PPA-GF30 and hybrid specimens decrease as well. The elevated temperature worsens the overall fatigue performance of the hybrid significantly.
- The used nondestructive testing techniques support the observations of the mechanical testing and give further information about the underlying damage mechanisms. The abrupt damage events can also be seen and localized in thermography. By using CT, occurring damage in the metal inlay at lower temperatures can be observed.
- The investigated hybrid specimen is a complex system containing of three single materials with two interfaces and interlockings. A temperature change affecting one part of the system has an influence on other parts and change the damage mechanism in a hard-to-calculate way.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Delogu, M.; Zanchi, L.; Dattilo, C.A.; Pierini, M. Innovative composites and hybrid materials for electric vehicles lightweightdesign in a sustainability perspective. Mater. Today Commun. 2017, 13, 192–209. [Google Scholar] [CrossRef]
- Meschut, G.; Janzen, V.; Olfermann, T. Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures. J. Mater. Eng. Perform. 2014, 23, 1515–1523. [Google Scholar] [CrossRef]
- Summa, J. In Situ Thermographie Zur Prognose Des Ermüdungsrisswachstums in Intrinsischen Al-CFK Hybridbauteilen Unter Zugschwellender Ermüdung Im High-Cycle Regime. Ph.D. Thesis, Saarland University, Saarbrücken, Germany.
- Schwarz, M.; Schwarz, M.; Herter, S.; Herrmann, H.-G. Nondestructive Testing of a Complex Aluminium-CFRP Hybrid Structure with EMAT and Thermography. J. Nondestruct. Eval. 2019, 38, 35. [Google Scholar] [CrossRef]
- Schwarz, M. Multimodale zerstörungsfreie Charakterisierung der Grenzflächen von Metall-CFK-Hybridstrukturen. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2019. [Google Scholar]
- Summa, J.; Becker, M.; Grossmann, F.; Pohl, M.; Stommel, M.; Herrmann, H.-G. Fracture analysis of a metal to CFRP hybrid with thermoplastic interlayers for interfacial stress relaxation using in situ thermography. Compos. Struct. 2018, 193, 19–28. [Google Scholar] [CrossRef]
- Schwarz, M.; Summa, J.; Quirin, S.; Herrmann, H.G. New Approaches in Nondestructive Characterisation of Defects in Metal-CFRP Hybrids. Mater. Sci. Forum 2015, 825–826, 976–982. [Google Scholar] [CrossRef]
- Ucsnik, S.; Scheerer, M.; Zaremba, S.; Pahr, D.H. Experimental investigation of a novel hybrid metal–composite joining technology. Compos. Part A Appl. Sci. Manuf. 2010, 41, 369–374. [Google Scholar] [CrossRef]
- Jung, K.W.; Kawahito, Y.; Takahashi, M.; Katayama, S. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel. Mater. Des. 2013, 47, 179–188. [Google Scholar] [CrossRef]
- Fleischer, J. Intrinsische Hybridverbunde Für Leichtbautragstrukturen: Grundlagen der Fertigung, Charakterisierung und Auslegung; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-662-62832-4. [Google Scholar]
- Fleischer, J.; Nieschlag, J. Introduction to CFRP-metal hybrids for lightweight structures. Prod. Eng. 2018, 12, 109–111. [Google Scholar] [CrossRef]
- Nieschlag, J.; Ruhland, P.; Daubner, S.; Koch, S.-F.; Fleischer, J. Finite element optimisation for rotational moulding with a core to manufacture intrinsic hybrid FRP metal pipes. Prod. Eng. 2018, 12, 239–247. [Google Scholar] [CrossRef]
- Serna, J.; Zinn, C.; Scharf, I.; Dittes, A.; Schwoebel, S.-D.; Schmidt, C.; Meiners, D.; Schaper, M.; Lampke, T. Concepts for interface engineering and characterization in composite hybrid structures. IOP Conf. Ser. Mater. Sci. Eng. 2019, 480, 12014. [Google Scholar] [CrossRef]
- Ostermann, F. Anwendungstechnologie Aluminium; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-662-43807-7. [Google Scholar]
- Cao, S.; WU, Z.; Wang, X. Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. J. Compos. Mater. 2009, 43, 315–330. [Google Scholar] [CrossRef]
- Im, K.-H.; Cha, C.-S.; Kim, S.-K.; Yang, I.-Y. Effects of temperature on impact damages in CFRP composite laminates. Compos. Part B Eng. 2001, 32, 669–682. [Google Scholar] [CrossRef]
- Miyano, Y.; Nakada, M.; Kudoh, H.; Muki, R. Prediction of tensile fatigue life under temperature environment for unidirectional CFRP. Adv. Compos. Mater. 1999, 8, 235–246. [Google Scholar] [CrossRef]
- Domininghaus, H.; Elsner, P.; Eyerer, P.; Hirth, T. Kunststoffe: Eigenschaften Und Anwendungen; 8., neu bearb. und erw. Aufl.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-16173-5. [Google Scholar]
- Lyons, J.S. Time and temperature effects on the mechanical properties of glass-filled amide-based thermoplastics. Polym. Test. 1998, 17, 237–245. [Google Scholar] [CrossRef]
- Lyons, J.S.; Tinio, E.G.; Berry, S.F. Creep, stress rupture, and isothermal aging of reinforced polyphthalamide. J. Appl. Polym. Sci. 1995, 56, 1169–1177. [Google Scholar] [CrossRef]
- Ke, L.; Li, C.; He, J.; Shen, Q.; Liu, Y.; Jiao, Y. Enhancing fatigue performance of damaged metallic structures by bonded CFRP patches considering temperature effects. Mater. Des. 2020, 192, 108731. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Li, M.; Mei, M. Influence of working temperatures on mechanical behavior of hybrid joints with carbon fiber reinforced plastic/aluminum lightweight materials for automotive structure. J. Manuf. Process. 2019, 45, 392–407. [Google Scholar] [CrossRef]
- Mrzljak, S.; Schmidt, S.; Kohl, A.; Hülsbusch, D.; Hausmann, J.; Walther, F. Testing Procedure for Fatigue Characterization of Steel-CFRP Hybrid Laminate Considering Material Dependent Self-Heating. Materials 2021, 14, 3394. [Google Scholar] [CrossRef] [PubMed]
- T300/FT300; Commercial Documentation. Toray Carbon Fibers Europe: Abidos, France, 2012. Available online: https://toray-cfe.com/wp-content/uploads/2020/12/toray-torayca-t300ft300-haute-resistance.pdf (accessed on 7 December 2022).
- Biresin CR170 Mit Biresin CH150-3 Härter; Data Sheet; Sika: Bad Urach, Germany, September 2020; Available online: https://industry.sika.com/dms/getdocument.get/ed43cb3a-98e6-49e1-b396-cfae053f7610/Biresin_CR170-CH150-3-New.pdf (accessed on 7 December 2022).
- AlMgSi1 EN AW-6082; Data Sheet; Schmolz + Bickenbach: Krefeld, Germany, March 2011; Available online: https://pdf4pro.com/view/3-2315-almgsi1-alsimgmn-en-aw-6082-1b7af2.html (accessed on 7 December 2022).
- VESTAMID HTplus M1033-PA66/6T-GF30; Data Sheet. Evonik: Essen, Germany, 2018. Available online: http://www.campusplastics.com/ (accessed on 11 September 2018).
- DIN EN ISO 527-4; DIN. Plastics-Determination of Tensile Properties-Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. Beuth Verlag: Berlin, Germany, 2020.
- DIN EN ISO 527-2; DIN. Plastics-Determination of Tensile Properties-Part 2: Test Conditions for Moulding and Extrusion Plastics. Beuth Verlag: Berlin, Germany, 2012.
- Rösner, H.; Netzelmann, U.; Hoffmann, J.; Karpen, W.; Kramb, V.; Meyendorf, N. Thermographic Materials Characterization. In Nondestructive Materials Characterization; Hull, R., Osgood, R.M., Parisi, J., Warlimont, H., Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 246–285. ISBN 978-3-642-07350-2. [Google Scholar]
- Maldague, X.P.V. Theory and Practice of Infrared Technology for Nondestructive Testing; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-18190-3. [Google Scholar]
- Meschede, D. Gerthsen Physik; 25. Aufl.; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-45977-5. [Google Scholar]
- Wu, D.; Busse, G. Lock-In Thermography for Nondestructive Evaluation of Materials. Rev. Générale Therm. 1998, 37, 693–703. [Google Scholar] [CrossRef]
- Carmignato, S.; Dewulf, W. Industrial X-ray Computed Tomography; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-59571-9. [Google Scholar]
- InfraTec. VarioCAM HD Head; User Manual; InfraTec: Dresden, Germany, 2012. [Google Scholar]
Young’s Modulus [GPa] | Tensile Strength [MPa] | Elongation at Break [%] | |
---|---|---|---|
PPA-GF30 | 11 | 160 | 1.7 |
Carbon fiber | 230 | 3530 | 1.5 |
aluminium | 67 | 310 | 10 |
Specimen Type | Mean Maximum Displacement [mm] | Percentage Variance [%] | Mean Maximum Force [KN] | Percentage Variance [%] | ||
---|---|---|---|---|---|---|
23 °C | 60 °C | 23 °C | 60 °C | |||
PPA-GF30 | 2.11 ± 0.04 | 2.25 ± 0.11 | 6.2 | 5.97 ± 0.04 | 5.33 ± 0.06 | 12 |
CFRP | 1.00 ± 0.38 | 1.00 ± 0.06 | 0 | 5.55 ± 0.11 | 5.17 ± 0.13 | 6.8 |
Specimen Type | Initial Stiffness [kN/mm] | Cycles | ||
---|---|---|---|---|
23 °C | 60 °C | 23 °C | 60 °C | |
PPA-GF30 | 3.38 ± 0.02 | 3.08 ± 0.2 | 1607 ± 392 | 956 ± 728 |
CFRP | 6.79 ± 0.04 | 6.57 ± 0.09 | 1,000,000 | 1,000,000 |
Hybrid | 24.00 ± 1.2 | 21.34 ± 0.32 | 103,000 ± 43,778 | 50,000 ± 12,468 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jost, H.; Grossmann, F.; Herrmann, H.-G. Mechanical Behaviour of a Metal-CFRP-Hybrid Structure and Its Components under Quasi-Static and Dynamic Load at Elevated Temperature. Appl. Sci. 2022, 12, 12824. https://doi.org/10.3390/app122412824
Jost H, Grossmann F, Herrmann H-G. Mechanical Behaviour of a Metal-CFRP-Hybrid Structure and Its Components under Quasi-Static and Dynamic Load at Elevated Temperature. Applied Sciences. 2022; 12(24):12824. https://doi.org/10.3390/app122412824
Chicago/Turabian StyleJost, Hendrik, Felix Grossmann, and Hans-Georg Herrmann. 2022. "Mechanical Behaviour of a Metal-CFRP-Hybrid Structure and Its Components under Quasi-Static and Dynamic Load at Elevated Temperature" Applied Sciences 12, no. 24: 12824. https://doi.org/10.3390/app122412824
APA StyleJost, H., Grossmann, F., & Herrmann, H. -G. (2022). Mechanical Behaviour of a Metal-CFRP-Hybrid Structure and Its Components under Quasi-Static and Dynamic Load at Elevated Temperature. Applied Sciences, 12(24), 12824. https://doi.org/10.3390/app122412824