Disaster Precursor Identification and Early Warning of the Lishanyuan Landslide Based on Association Rule Mining
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. PSO-Optimized k-Means Algorithm
2.3. Association Rule Mining and Apriori Algorithm
3. Study Area
3.1. Landslide Overview
3.2. Deformation Characteristics
3.3. Feature Engineering
4. Results
4.1. Clustering Results
4.2. Association Rule Mining Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, D.; Hu, S.; Tong, L.; Xia, C. Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China. Land 2020, 9, 510. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook-2021; China Statistics Press: Beijing, China, 2021.
- Bai, D.; Tang, J.; Lu, G.; Zhu, Z.; Liu, T.; Fang, J. The Design and Application of Landslide Monitoring and Early Warning System Based on Microservice Architecture. Geomat. Nat. Hazards Risk 2020, 11, 928–948. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Q. An Early Warning System Integrating Time-of-Failure Analysis and Alert Procedure for Slope Failures. Eng. Geol. 2020, 272, 105629. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, D.; Zhang, S.; Zhu, X.; He, C.; Qi, X.; Zhao, K.; Xiu, D.; Ju, N. Successful Implementations of a Real-Time and Intelligent Early Warning System for Loess Landslides on the Heifangtai Terrace, China. Eng. Geol. 2020, 278, 105817. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, G.; Zou, W. Video Monitoring of Landslide Based on Background Subtraction with Gaussian Mixture Model Algorithm. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8432–8435. [Google Scholar]
- Lau, Y.M.; Wang, K.L.; Wang, Y.H.; Yiu, W.H.; Ooi, G.H.; Tan, P.S.; Wu, J.; Leung, M.L.; Lui, H.L.; Chen, C.W. Monitoring of Rainfall-Induced Landslides at Songmao and Lushan, Taiwan, Using IoT and Big Data-Based Monitoring System. Landslides 2022, 1–26. [Google Scholar] [CrossRef]
- Sheikh, M.R.; Nakata, Y.; Shitano, M.; Kaneko, M. Rainfall-Induced Unstable Slope Monitoring and Early Warning through Tilt Sensors. Soils Found. 2021, 61, 1033–1053. [Google Scholar] [CrossRef]
- Liu, C.; Shao, X.; Li, W. Multi-Sensor Observation Fusion Scheme Based on 3D Variational Assimilation for Landslide Monitoring. Geomat. Nat. Hazards Risk 2019, 10, 151–167. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Liu, J.; Subramanian, S.S.; He, C.; Zhu, X.; Zhou, L. Successful Early Warning and Emergency Response of a Disastrous Rockslide in Guizhou Province, China. Landslides 2019, 16, 2445–2457. [Google Scholar] [CrossRef]
- Zhu, L.; Deng, Y.; He, S. Characteristics and Failure Mechanism of the 2018 Yanyuan Landslide in Sichuan, China. Landslides 2019, 16, 2433–2444. [Google Scholar] [CrossRef]
- Ma, S.; Xu, C.; Xu, X.; He, X.; Qian, H.; Jiao, Q.; Gao, W.; Yang, H.; Cui, Y.; Zhang, P.; et al. Characteristics and Causes of the Landslide on July 23, 2019 in Shuicheng, Guizhou Province, China. Landslides 2020, 17, 1441–1452. [Google Scholar] [CrossRef]
- Xu, Q.; Yuan, Y.; Zeng, Y.; Hack, R. Some New Pre-Warning Criteria for Creep Slope Failure. Sci. China Technol. Sci. 2011, 54, 210–220. [Google Scholar] [CrossRef]
- Jeng, C.J.; Chen, S.S.; Tseng, C.H. A Case Study on the Slope Displacement Criterion at the Critical Accelerated Stage Triggered by Rainfall and Long-Term Creep Behavior. Nat. Hazards 2022, 112, 2277–2312. [Google Scholar] [CrossRef]
- Valletta, A.; Carri, A.; Segalini, A. Definition and Application of a Multi-Criteria Algorithm to Identify Landslide Acceleration Phases. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2021, 16, 555–569. [Google Scholar] [CrossRef]
- Bai, D.; Lu, G.; Zhu, Z.; Zhu, X.; Tao, C.; Fang, J. A Hybrid Early Warning Method for the Landslide Acceleration Process Based on Automated Monitoring Data. Appl. Sci. 2022, 12, 6478. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, P.; Hu, J.; Zhou, P.; Bai, M.; Hu, J. The Application of Multi-Sensor Target Tracking and Fusion Technology to the Comprehensive Early Warning Information Extraction of Landslide Multi-Point Monitoring Data. Measurement 2020, 166, 108044. [Google Scholar] [CrossRef]
- Li, W.; Tsung, F.; Song, Z.; Zhang, K.; Xiang, D. Multi-Sensor Based Landslide Monitoring via Transfer Learning. J. Qual. Technol. 2021, 53, 474–487. [Google Scholar] [CrossRef]
- Bai, D.; Lu, G.; Zhu, Z.; Zhu, X.; Tao, C.; Fang, J. Using Electrical Resistivity Tomography to Monitor the Evolution of Landslides’ Safety Factors under Rainfall: A Feasibility Study Based on Numerical Simulation. Remote Sens. 2022, 14, 3592. [Google Scholar] [CrossRef]
- Denchik, N.; Gautier, S.; Dupuy, M.; Batiot-Guilhe, C.; Lopez, M.; Léonardi, V.; Geeraert, M.; Henry, G.; Neyens, D.; Coudray, P.; et al. In-Situ Geophysical and Hydro-Geochemical Monitoring to Infer Landslide Dynamics (Pégairolles-de-l’Escalette Landslide, France). Eng. Geol. 2019, 254, 102–112. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, Q.; Lu, Z.; Luo, H.; Liao, L.; Dong, X. Modelling and Predicting Landslide Displacements and Uncertainties by Multiple Machine-Learning Algorithms: Application to Baishuihe Landslide in Three Gorges Reservoir, China. Geomat. Nat. Hazards Risk 2021, 12, 741–762. [Google Scholar] [CrossRef]
- Qing, H.; Zheng, G.; Fu, D. Risk Data Analysis of Cross Border E-Commerce Transactions Based on Data Mining. J. Phys. Conf. Ser. 2021, 1744, 032014. [Google Scholar] [CrossRef]
- Tornero-Velez, R.; Isaacs, K.; Dionisio, K.; Prince, S.; Laws, H.; Nye, M.; Price, P.S.; Buckley, T.J. Data Mining Approaches for Assessing Chemical Coexposures Using Consumer Product Purchase Data. Risk Anal. 2021, 41, 1716–1735. [Google Scholar] [CrossRef]
- Espadinha-Cruz, P.; Godina, R.; Rodrigues, E.M.G. A Review of Data Mining Applications in Semiconductor Manufacturing. Processes 2021, 9, 305. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. Machine Learning and Data Mining in Manufacturing. Expert Syst. Appl. 2021, 166, 114060. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Xi, Z.; Zhang, R.; Huang, X. Physics-Driven Deep Learning Inversion with Application to Magnetotelluric. Remote Sens. 2022, 14, 3218. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, Y.; Xie, J.; Luo, Y.; Zhang, P.; Liu, H.; Liu, J. Seepage Detection in Earth-Filled Dam from Self-Potential and Electrical Resistivity Tomography. Eng. Geol. 2022, 306, 106750. [Google Scholar] [CrossRef]
- Hua, S.; Liu, Q.; Yin, G.; Guan, X.; Jiang, N.; Zhang, Y. Research on 3D Medical Image Surface Reconstruction Based on Data Mining and Machine Learning. Int. J. Intell. Syst. 2022, 37, 4654–4669. [Google Scholar] [CrossRef]
- Ishaq, A.; Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access 2021, 9, 39707–39716. [Google Scholar] [CrossRef]
- Wu, W.-T.; Li, Y.-J.; Feng, A.-Z.; Li, L.; Huang, T.; Xu, A.-D.; Lyu, J. Data Mining in Clinical Big Data: The Frequently Used Databases, Steps, and Methodological Models. Mil. Med. Res. 2021, 8, 44. [Google Scholar] [CrossRef]
- Palacios, C.A.; Reyes-Suárez, J.A.; Bearzotti, L.A.; Leiva, V.; Marchant, C. Knowledge Discovery for Higher Education Student Retention Based on Data Mining: Machine Learning Algorithms and Case Study in Chile. Entropy 2021, 23, 485. [Google Scholar] [CrossRef]
- Xin, Y. Analyzing the Quality of Business English Teaching Using Multimedia Data Mining. Mob. Inf. Syst. 2021, 2021, e9912460. [Google Scholar] [CrossRef]
- Yong, C.; Jinlong, D.; Fei, G.; Bin, T.; Tao, Z.; Hao, F.; Li, W.; Qinghua, Z. Review of Landslide Susceptibility Assessment Based on Knowledge Mapping. Stoch Environ. Res Risk Assess 2022, 36, 2399–2417. [Google Scholar] [CrossRef]
- Rafiei Sardooi, E.; Azareh, A.; Mesbahzadeh, T.; Soleimani Sardoo, F.; Parteli, E.J.R.; Pradhan, B. A Hybrid Model Using Data Mining and Multi-Criteria Decision-Making Methods for Landslide Risk Mapping at Golestan Province, Iran. Environ. Earth Sci. 2021, 80, 487. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Pourghasemi, H.R.; Zare, M.; Blaschke, T. Landslide Susceptibility Mapping Using GIS-Based Data Mining Algorithms. Water 2019, 11, 2292. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Tang, H.; Liu, X.; Hu, X.; Sun, M.; Song, Y. Establishment of a Deformation Forecasting Model for a Step-like Landslide Based on Decision Tree C5.0 and Two-Step Cluster Algorithms: A Case Study in the Three Gorges Reservoir Area, China. Landslides 2017, 14, 1275–1281. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Hu, X.; Bobet, A.; Zhang, M.; Zhu, T.; Song, Y.; Ez Eldin, M.A.M. Identification of Causal Factors for the Majiagou Landslide Using Modern Data Mining Methods. Landslides 2017, 14, 311–322. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Li, L.; Liao, K.; Xue, Y. Triggering Factors and Threshold Analysis of Baishuihe Landslide Based on the Data Mining Methods. Nat. Hazards 2021, 105, 2677–2696. [Google Scholar] [CrossRef]
- Guo, L.; Miao, F.; Zhao, F.; Wu, Y. Data Mining Technology for the Identification and Threshold of Governing Factors of Landslide in the Three Gorges Reservoir Area. Stoch. Environ. Res. Risk Assess 2022, 36, 3997–4012. [Google Scholar] [CrossRef]
- Bai, D.; Lu, G.; Zhu, Z.; Tang, J.; Fang, J.; Wen, A. Using Time Series Analysis and Dual-Stage Attention-Based Recurrent Neural Network to Predict Landslide Displacement. Environ. Earth Sci. 2022, 81, 509. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, G.; Dong, J. Prediction of Landslide Displacement with Step-like Curve Using Variational Mode Decomposition and Periodic Neural Network. Bull. Eng. Geol. Environ. 2021, 80, 3783–3799. [Google Scholar] [CrossRef]
q3h | q6h | q12h | q24h | q3d | q7d | |
---|---|---|---|---|---|---|
0.970735 | 0.971045 | 0.971962 | 0.973857 | 0.978478 | 0.979868 | |
0.964633 | 0.964742 | 0.96582 | 0.968061 | 0.973537 | 0.975926 |
Feature Name | Cluster Name | Lower Bound | Upper Bound | Count | Mean | Standard Deviation |
---|---|---|---|---|---|---|
DB01-Low-Velocity | −3.64 | 4.70 | 4887 | 0.46 | 1.02 | |
DB01-Medium-Velocity | 4.78 | 15.54 | 253 | 9.09 | 2.83 | |
DB01-High-Velocity | 16.49 | 60.96 | 56 | 23.58 | 6.25 | |
DB02-Low-Velocity | −3.84 | 4.77 | 4669 | 0.60 | 1.23 | |
DB02-Medium-Velocity | 4.79 | 55.37 | 507 | 13.39 | 8.55 | |
DB02-High-Velocity | 59.24 | 108.84 | 20 | 90.67 | 15.85 | |
Rain-3 h-Low | 0.00 | 3.60 | 4962 | 0.18 | 0.56 | |
Rain-3 h-Medium | 3.80 | 19.40 | 217 | 7.33 | 3.43 | |
Rain-3 h-High | 21.20 | 61.40 | 17 | 34.34 | 12.17 | |
Rain-6 h-Low | 0.00 | 5.00 | 4830 | 0.32 | 0.88 | |
Rain-6 h-Medium | 5.20 | 24.40 | 333 | 9.95 | 4.57 | |
Rain-6 h-High | 24.80 | 83.80 | 33 | 39.42 | 16.47 | |
Rain-12 h-Low | 0.00 | 7.20 | 4656 | 0.64 | 1.48 | |
Rain-12 h-Medium | 7.40 | 32.80 | 494 | 13.93 | 6.12 | |
Rain-12 h-High | 33.40 | 89.20 | 46 | 52.80 | 17.83 | |
Rain-24 h-Low | 0.00 | 10.40 | 4429 | 1.39 | 2.55 | |
Rain-24 h-Medium | 10.60 | 43.00 | 698 | 19.64 | 7.76 | |
Rain-24 h-High | 45.00 | 99.40 | 69 | 68.48 | 17.00 | |
Rain-3 d-Low | 0.00 | 17.20 | 3736 | 4.31 | 5.12 | |
Rain-3 d-Medium | 17.40 | 68.20 | 1284 | 30.46 | 11.61 | |
Rain-3 d-High | 68.60 | 202.20 | 176 | 106.48 | 28.89 | |
Rain-7 d-Low | 0.00 | 35.20 | 3554 | 15.46 | 10.88 | |
Rain-7 d-Medium | 35.40 | 122.20 | 1450 | 55.17 | 17.47 | |
Rain-7 d-High | 130.60 | 285.80 | 192 | 197.53 | 46.03 |
Rule ID | Mined Association Rules | Confidence | Support | Lift |
---|---|---|---|---|
1 | Rain-24 h-Low & Rain-3 d-High & Rain-7 d-High => DB01-High-Velocity | 86.36% | 0.37% | 80.13 |
2 | Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-7 d-High => DB01-High-Velocity | 86.36% | 0.37% | 80.13 |
3 | Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High => DB01-High-Velocity | 90.48% | 0.37% | 83.95 |
4 | Rain-24 h-Low & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High => DB01-High-Velocity | 86.36% | 0.37% | 80.13 |
5 | Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High => DB01-High-Velocity | 90.48% | 0.37% | 83.95 |
6 | Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High => DB01-High-Velocity | 86.36% | 0.37% | 80.13 |
7 | Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High => DB01-High-Velocity | 90.48% | 0.37% | 83.95 |
8 | Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High =>DB01-High-Velocity | 90.48% | 0.37% | 83.95 |
9 | Rain-12 h-Low & Rain-24 h-High & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
10 | Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
11 | Rain-12 h-Low & Rain-24 h-High & Rain-3 h-Low & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
12 | Rain-12 h-Low & Rain-24 h-High & Rain-6 h-Low & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
13 | Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
14 | Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
15 | Rain-12 h-Low & Rain-24 h-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
16 | Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High => DB02-High-Velocity | 83.33% | 0.10% | 216.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Bai, D.; He, H.; Luo, J.; Lu, G. Disaster Precursor Identification and Early Warning of the Lishanyuan Landslide Based on Association Rule Mining. Appl. Sci. 2022, 12, 12836. https://doi.org/10.3390/app122412836
Xu J, Bai D, He H, Luo J, Lu G. Disaster Precursor Identification and Early Warning of the Lishanyuan Landslide Based on Association Rule Mining. Applied Sciences. 2022; 12(24):12836. https://doi.org/10.3390/app122412836
Chicago/Turabian StyleXu, Junwei, Dongxin Bai, Hongsheng He, Jianlan Luo, and Guangyin Lu. 2022. "Disaster Precursor Identification and Early Warning of the Lishanyuan Landslide Based on Association Rule Mining" Applied Sciences 12, no. 24: 12836. https://doi.org/10.3390/app122412836
APA StyleXu, J., Bai, D., He, H., Luo, J., & Lu, G. (2022). Disaster Precursor Identification and Early Warning of the Lishanyuan Landslide Based on Association Rule Mining. Applied Sciences, 12(24), 12836. https://doi.org/10.3390/app122412836