Assessment of the Ecotoxicity of Ag, Bi, Te and Tl According to the Biological Indicators of Haplic Chernozem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Object
2.2. Heavy Metals
2.3. Simulation Experiment
2.4. Physical and Chemical Properties
2.5. Methods for Assessing Biological Activity
2.6. Statistical Processing
- Sd = significant difference
- ts = Student’s coefficient
3. Results
3.1. Microbiological Indicators
3.2. Enzymatic Activity
3.3. Phytotoxic Indicators
3.4. The Change in the Integral Indicator of the Biological State of Haplic Chernozem
4. Discussion
- oxide of silver: LR = B > G > Adeh> A cat = Az
- nitrate of silver: B > G = LR > Acat > Adeh > Az
- oxide of bismuth: LR > B = G > Adeh > Acat > Az
- nitrate of bismuth: B > G = LR > Acat > Adeh > Az
- oxide of thallium: B > G > LR > Adeh = Acat > Az
- nitrate of thallium: B > LR >G > Adeh > Acat > Az
- oxide of tellurium: LR = B > G > Acat >Adeh > Az
- nitrate of tellurium: B > LR > Adeh > G > Acat > Az
- oxide of silver: Az > Adeh > Acat >LR > B > G
- nitrate of silver: Az > Adeh = LR > G >Acat >B
- oxide of bismuth: Az > Acat > G >Adeh > LR > B
- nitrate of bismuth: Az > G > Adeh >Acat = LR > B
- oxide of thallium: Az > LR> G > B > Acat =Adeh
- nitrate of thallium: Az > Acat >Adeh > G = LR > B
- oxide of tellurium: Az >Adeh > Acat > B > G = LR
- nitrate of tellurium: Az > Acat > G >Adeh = LR > B
- oxides: bismuth (82) < silver (78) = tellurium (78) < thallium (77)
- nitrates: silver (80) = bismuth (80) < thallium (60) < tellurium (56)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sustainable Land Management. Available online: https://www.fao.org/land-water/land/sustainable-land-management/ru (accessed on 28 October 2022).
- O’Riordan, R.; Davies, J.; Stevens, C.J.; Quinton, J.N.; Boyko, C.T. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Vasenev, V.I.; van Oudenhoven, A.P.; Romzaykina, O.N.; Hajiaghaeva, R. The Ecological Functions and Ecosystem Services of Urban and Technogenic Soils: From Theory to Practice (A Review). Eurasian Soil Sci. 2018, 51, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, S.I.; Kazeev, K.S.; Akimenko, Y.V. Development of regional standards for pollutants in the soil using biological parameters. Environ. Monit. Assess. 2019, 191, 544. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, S.; Minnikova, T.; Kazeev, K.; Akimenko, Y.; Evstegneeva, N. Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region). Water Air Soil Pollut. 2022, 233, 18. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, J.; Xiong, Z. Ag, Ta, Ru, and Ir enrichment in surface soil: Evidence for land pollution of heavy metal from atmospheric deposition. Glob. Biogeochem Cycles 2004, 18, 1–5. [Google Scholar] [CrossRef]
- Perkins, W.T. Extreme selenium and tellurium contamination in soils—an eighty year-old industrial legacy surrounding a Ni refinery in the Swansea Valley. Sci. Total Environ. 2011, 412-413, 162–169. [Google Scholar] [CrossRef]
- Wiklund, J.A.; Kirk, J.L.; Muir, D.C.G.; Carrier, J.; Gleason, A.; Yang, F.; Evans, M.; Keating, J. Widespread Atmospheric Tellurium Contamination in Industrial and Remote Regions of Canada. Environ. Sci. Technol. 2018, 52, 6137–6145. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Crc Press: Boca Raton, FL, USA, 2010; p. 548. [Google Scholar]
- Yildirim, D.; Sasmaz, A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). J. Geochem. Explor. 2017, 182, 228–234. [Google Scholar] [CrossRef]
- Druzhinin, A.V.; Karelina, E.V. The main types of industrial silver deposits. Bull. Peoples’ Friendsh. Univ. Russ. A Ser. Eng. Stud. 2008, 1, 35–41. [Google Scholar]
- Lyapunov, M.Y. Patterns of the distribution of chemical elements in the soils of the Pioneer gold deposit in the Amur Region. Geochemistry. Bull. Tomsk Polytech. Univ. 2014, 325, 57–68. [Google Scholar]
- Elekes, C.C.; Busuioc, G. The mycoremediation of metals polluted soils using wild growing species of mushrooms. In Proceedings of the 7th WSEAS International Conference on Engineering Education (EDUCATION '10), Varna, Bulgaria, 22–24 July 2010; pp. 36–39. [Google Scholar]
- Karbowska, B. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 2016, 188, 640–659. [Google Scholar] [CrossRef] [Green Version]
- Grösslová, Z.; Vaněk, A.; Oborná, V.; Mihaljevič, M.; Ettler, V.; Trubač, J.; Drahota, P.; Penížek, V.; Pavlů, L.; Sracek, O.; et al. Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights. Environ. Pollut. 2018, 239, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Chen, Y.H.; Shen, C.C.; Jiang, X.Y.; Xie, X.F.; Chen, D.Y.; Lippold, H.; Wang, C.L. Thallium dispersal and contamination in surface sediments from South China and its source identification. Environ. Pollut. 2016, 213, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Baceva, K.; Stafilov, T.; Sajn, R.; Tanaselia, C.; Makerski, P. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb-As-Tl Allchar mine, Republic of Macedonia. Environ. Res. 2014, 133, 77–89. [Google Scholar] [CrossRef]
- Grygoyć, K.; Jabłońska-Czapla, M. Development of a Tellurium Speciation Study Using IC-ICP-MS on Soil Samples Taken from an Area Associated with the Storage. Processing, and Recovery of Electrowaste. Molecules 2021, 26, 2651. [Google Scholar] [CrossRef] [PubMed]
- Hayes, S.M.; Ramos, N.A. Surficial geochemistry and bioaccessibility of tellurium in semiarid mine tailings. Environ. Chem. 2019, 16, 251–265. [Google Scholar] [CrossRef]
- Kwak, J.I.; Nam, S.H.; An, Y.J. Applicability Evaluation of Soil Algae Pipe Assay in Silver Nanoparticle-Contaminated Soils. Appl. Sci. 2022, 12, 1890. [Google Scholar] [CrossRef]
- Nam, S.H.; Kwak, J.I.; An, Y.J. Rapid in Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. Appl. Sci. 2021, 11, 2463. [Google Scholar] [CrossRef]
- Yan, C.; Huang, J.; Cao, C.; Li, R.; Ma, Y.; Wang, Y. Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil. Environ. Sci. Pollut. Res. 2020, 27, 8058–8070. [Google Scholar] [CrossRef]
- Eivazi, F.; Afrasiabi, Z.; Jose, E. Pedosphere Effects of Silver Nanoparticles on the Activities of Soil Enzymes Involved in Carbon and Nutrient Cycling. Pedosphere 2018, 28, 209–214. [Google Scholar] [CrossRef]
- Cvjetko, P.; Milošić, A.; Domijan, A.-M.; Vinković Vrček, I.; Tolić, S.; Peharec Štefanić, P.; Letofsky-Papst, I.; Tkalec, M.; Balen, B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017, 137, 8–28. [Google Scholar] [CrossRef] [PubMed]
- Grün, A.; Straskraba, S.; Schulz, S.; Schloter, M.; Emmerling, C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J. Environ. Sci. 2018, 69, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Montes de Oca-Vásquez, G.; Solano-Campos, F.; Vega-Baudrit, J.R.; López-Mondéjar, R.; Vera, A.; Morenof, J.L.; Bastidaf, F. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. Sci. Total Environ. 2020, 744, 140919. [Google Scholar] [CrossRef] [PubMed]
- Murata, T. Effects of bismuth contamination on the growth and activity of soil microorganisms using thiols as model compounds. J. Env. Sci Health A. Tox Hazard Subst Envion. Eng. 2006, 41, 161–172. [Google Scholar] [CrossRef]
- Wei, C.; Deng, Q.; Wu, F.; Fu, Z.; Xu, L. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Biol. Trace Elem. Res. 2011, 144, 1150–115810. [Google Scholar] [CrossRef]
- Kearns, J.; Turner, A. An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga. Environ. Pollut. 2016, 208, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zheng, J.; Tagami, K.; Uchida, S. Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry. Talanta 2013, 116, 181–187. [Google Scholar] [CrossRef]
- Nelson, B.; Chen, Y.-W. Tellurium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2015, 63, 83–92. [Google Scholar]
- Pavoni, E.; Petranich, E.; Adami, G.; Baracchini, E.; Crosera, M.; Emili, A.; Lenaz, D.; Higueras, P.; Covelli, S. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a UDCommisioned zinc-lead mine (Northeastern Italian Alps). J. Environ. Manag. 2017, 186, 214–224. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiao, T.F.; Bao, Z.A.; Lippold, H.; Luo, X.W.; Yin, M.L.; Ren, J.M.; Chen, Y.H.; Linghu, W.S. Geochemical dispersal of thallium and other metals in sediment profiles from a smelter-impacted area in South China. Appl. Geochem. 2018, 88, 239–246. [Google Scholar] [CrossRef]
- Presentato, A.; Turner, R.J.; Vásquez, C.C.; Yurkov, V.; Zannoni, D. Tellurite-dependent blackening of bacteria emerges from the dark ages. Environ. Chem. 2019, 16, 266–288. [Google Scholar] [CrossRef]
- Zare, B.; Faramarzi, M.A.; Sepehrizadeh, Z.; Shakibaie, M.; Rezaie, S.; Shahverdi, A.R. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater. Res. Bull. 2012, 47, 3719–3725. [Google Scholar] [CrossRef]
- Lin, Z.H.; Lee, C.H.; Chang, H.Y.; Chang, H.T. Antibacterial activities of tellurium nanomaterials. Chem. Asian J. 2012, 5, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, S.I.; Tsepina, N.I.; Sudina, L.V.; Minnikova, T.V.; Kazeev, K.S.; Akimenko, Y.V. Silver ecotoxicity estimation by the soils state biological indicators. Appl. Environ. Soil Sci. 2020, 2022, 1–9. [Google Scholar] [CrossRef]
- Kolesnikov, S.; Tsepina, N.; Minnikova, T.; Kazeev, K.; Mandzhieva, S.; Sushkova, S.; Minkina, T.; Mazarji, M.; Singh, R.K.; Rajput, V.D. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants 2021, 10, 1022. [Google Scholar] [CrossRef]
- Tsepina, N.; Kolesnikov, S.; Minnikova, T.; Timoshenko, A.; Kazeev, K. Soil contamination by silver and assessment of its ecotoxicity. Rev. Agric. Sci. 2022, 10, 186–205. [Google Scholar] [CrossRef]
- Sudina, L.; Kolesnikov, S.; Minnikova, T.; Kazeev, K.; Sushkova, S.; Minkina, T. Assessment of ecotoxicity of the bismuth by biological indicators of soil condition. Eurasian J. Soil Sci. 2021, 10, 236–242. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Sudina, L.V.; Kuzina, A.A.; Minnikova, T.V.; Tsepina, N.I.; Kazeev, K.S.; Akimenko, Y.V. The effect of bismuth contamination on the soil biological properties. Agric. Nat. Resour. 2022, 56, 417–428. [Google Scholar] [CrossRef]
- Kolesnikov, S.I. Impact of Contamination with Tellurium on Biological Properties of Ordinary Chernozem. Soil Sediment Contam. Int. J. 2019, 28, 792–800. [Google Scholar] [CrossRef]
- Kolesnikov, S.; Minnikova, T.; Minkina, T.; Rajput, V.D.; Tsepina, N.; Kazeev, K.; Zhadobin, A.; Nevedomaya, E.; Ter-Misakyants, T.; Akimenko, Y.; et al. Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments 2021, 8, 119. [Google Scholar] [CrossRef]
- Minnikova, T.; Kolesnikov, S.; Evstegneeva, N.; Timoshenko, A.; Tsepina, N. Estimation of the Enzymatic Activity of Haplic Chernozem under Contamination with Oxides and Nitrates of Ag, Bi, Te and Tl. Agronomy 2022, 12, 2183. [Google Scholar] [CrossRef]
- Panagos, P.; Jones, A.; Stolbovoy, V.; Máté, F.; Bódis, K.; Jones, A.; Panagos, P.; Van Liedekerke, M.H.; Joint Research Centre, Institute for Environment and Sustainability. Soils of the European Union. Publications Office, 2014. Available online: https://data.europa.eu/doi/10.2788/87029 (accessed on 10 November 2022).
- Tóth, G.; Montanarella, L.; Stolbovoy, V.; Máté, F.; Bódis, K.; Jones, A.; Panagos, P.; Van Liedekerke, M. Soils of the European Union; JRC Scientific and Technical Reports; Office for Official Publications of the European Communities: Luxembourg, 2008. [Google Scholar]
- Panagos, P.; Liedekerke, M.H.; Montanarella, L. Multi-scale European Soil Information System (MEUSIS): A multi-scale method to derive soil indicators. Comput. Geosci. 2011, 15, 463–475. [Google Scholar] [CrossRef]
- Minnikova, T.V.; Denisova, T.V.; Mandzhieva, S.S.; Kolesnikov, S.I.; Minkina, T.M.; Chaplygin, V.A.; Burachevskaya, M.V.; Sushkova, S.N.; Bauer, T.V. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J. Geochem. Explor. 2017, 174, 70–78. [Google Scholar] [CrossRef]
- Minkina, T.M.; Mandzhieva, S.S.; Chaplygin, V.A.; Burachevskaya, M.V.; Bauer, T.V.; Sushkova, S.N.; Nevidomskaya, D.G.; Motuzova, G.V. Effect of aerotechnogenic emissions on the content of heavy metals in herbaceous plants of the lower Don region. Eurasian Soil Sci. 2017, 50, 746–755. [Google Scholar] [CrossRef]
- Clarke, L.B.; Sloss, L.L. Trace Elements Emission from Coal Combustion and Gasification. IEA Coal Res. 1992, 115–126. [Google Scholar]
- Dang, J.; Xie, Q.; Liang, D.; Wang, X.; Dong, H.; Cao, J. The Fate of Trace Elements in Yanshan Coal during Fast Pyrolysis. Minerals 2016, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 234. [Google Scholar]
- Anishchenko, A.N.; Shutkov, A.A. Problems of implementation of the Doctrine of food security in Russia. Food Policy Secur. 2021, 8, 9–22. [Google Scholar] [CrossRef]
- Soil Cover and Land Resources of the Russian Federation. Soil Science Institute named by Vasily Vasilyevich Dokuchaev’s Russian Academy of Agricultural Sciences; Soil Cover and Land Resources of the Russian Federation: Moscow, Russia, 2001; p. 399. [Google Scholar]
- Wylie, E.M.; Colletti, L.M.; Walker, L.F.; Lujan, E.J.; Garduno, K.; Mathew, K.J. Comparison of the Davies and Gray titrimetric method with potassium dichromate and ceric titrants. J. Radioanal. Nucl. Chem. 2018, 318, 227–233. [Google Scholar] [CrossRef]
- Galstyan, A.S. Unification of methods for studying the activity of soil enzymes. Eurasian Soil Sci. 1978, 2, 107–114. [Google Scholar]
- Khaziev, F.K. Methods of Soil Enzymology; Institute of Biology of the UFA Scientific Center Nauka: Moscow, Russia, 2005; p. 252. [Google Scholar]
- McFeters, G.A.; Yu, F.P.; Pyle, B.H.; Stewart, P.S. Physiological assessment of bacteria using fluorochromes. J. Microbiol. Methods 1995, 21, 1–13. [Google Scholar] [CrossRef]
- Zvyagintsev, D.G. Methods of Soil Microbiology and Biochemistry; Moscow State University: Moscow, Russia, 1991; p. 304. [Google Scholar]
- Zvyagintsev, D.G.; Babieva, I.P.; Zenova, G.M. Biology of Soils, 3rd ed.; Moscow University Publishing House: Moscow, Russian, 2005; 448p. [Google Scholar]
- Sheudzhen, A.K.; Gromova, L.I.; Pasternak, Y.E. Influence of mineral fertilizers on the yield and grain quality of winter wheat cultivated after sunflower. Fertility 2015, 1, 4–7. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Goleva, G.G.; Vashchenko, T.G.; Oleynikova, E.M.; Golev, A.D.; Ivannikov, A.; Fedulova, T.P. Morpho-biological diversity of winter wheat varieties assessment. International Transaction Journal of Engineering, Manag. Appl. Sci. Technol. 2020, 11, 1110. [Google Scholar] [CrossRef]
- Turebayeva, S.; Zhapparova, A.; Yerkin, A.; Aisakulova, K.; Yesseyeva, G.; Bissembayev, A.; Saljnikov, E. Productivity of Rainfed Winter Wheat with Direct Sowing and Economic Efficiency of Diversified Fertilization in Arid Region of South Kazakhstan. Agronomy 2022, 12, 111. [Google Scholar] [CrossRef]
- Kaczynski, P.; Lozowicka, B.; Hrynko, I.; Wolejko, E. Behaviour of mesotrione inmaize and soil system and its influence on soil dehydrogenase activity. Sci. Total Environ. 2016, 571, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
Biological Indicators | Materials and Conditions | Reference |
---|---|---|
Activity of catalase | gasometrical method | [56] |
Activity of dehydrogenases | PE 5800VI spectrophotometer | [57] |
The total number of bacteria | Carl Zeiss Axio Lab A1 microscope | [59] |
Azotobacter sp. abundance | abacterial air-box (BAVnp-01—“Laminar-S”). | [59] |
germination of winter wheat (Triticum aestivum L.) | Binder KBW-240 climate chamber | [60] |
root length of winter wheat (Triticum aestivum L.) | Binder KBW-240 climate chamber | [60] |
Heavy Metals | Chemical Form | Biological Indicators | |||||
---|---|---|---|---|---|---|---|
Acat | Adeh | Az | B | G | LR | ||
Silver | oxide | 90 | 86 | 90 | 66 | 74 | 65 |
nitrate | 82 | 90 | 94 | 57 | 79 | 80 | |
Bismuth | oxide | 90 | 89 | 98 | 76 | 75 | 66 |
nitrate | 89 | 91 | 99 | 47 | 78 | 78 | |
Thallium | oxide | 83 | 83 | 99 | 64 | 67 | 68 |
nitrate | 71 | 62 | 86 | 40 | 58 | 44 | |
Tellurium | oxide | 82 | 89 | 100 | 65 | 68 | 64 |
nitrate | 64 | 52 | 93 | 32 | 56 | 38 |
R | Chemical Form | Biological Indicators | |||||
---|---|---|---|---|---|---|---|
Acat | Adeh | Az | B | G | LR | ||
Silver | oxide | −0.86 | −0.96 | −0.99 | −0.66 | −0.61 | −0.76 |
nitrate | −0.72 | −0.90 | −0.96 | −0.71 | −0.88 | −0.91 | |
Bismuth | oxide | −0.90 | −0.72 | −0.96 | −0.63 | −0.79 | −0.66 |
nitrate | −0.81 | −0.83 | −0.95 | −0.78 | −0.86 | −0.81 | |
Thallium | oxide | −0.75 | −0.74 | −0.99 | −0.81 | −0.86 | −0.89 |
nitrate | −0.96 | −0.82 | −0.99 | −0.52 | −0.79 | −0.79 | |
Tellurium | oxide | −0.84 | −0.93 | −0.99 | −0.80 | −0.73 | −0.74 |
nitrate | −0.90 | −0.74 | −0.99 | −0.58 | −0.77 | −0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikov, S.; Minnikova, T.; Tsepina, N.; Evstegneeva, N.; Timoshenko, A. Assessment of the Ecotoxicity of Ag, Bi, Te and Tl According to the Biological Indicators of Haplic Chernozem. Appl. Sci. 2022, 12, 12854. https://doi.org/10.3390/app122412854
Kolesnikov S, Minnikova T, Tsepina N, Evstegneeva N, Timoshenko A. Assessment of the Ecotoxicity of Ag, Bi, Te and Tl According to the Biological Indicators of Haplic Chernozem. Applied Sciences. 2022; 12(24):12854. https://doi.org/10.3390/app122412854
Chicago/Turabian StyleKolesnikov, Sergey, Tatiana Minnikova, Natalya Tsepina, Natalya Evstegneeva, and Alena Timoshenko. 2022. "Assessment of the Ecotoxicity of Ag, Bi, Te and Tl According to the Biological Indicators of Haplic Chernozem" Applied Sciences 12, no. 24: 12854. https://doi.org/10.3390/app122412854
APA StyleKolesnikov, S., Minnikova, T., Tsepina, N., Evstegneeva, N., & Timoshenko, A. (2022). Assessment of the Ecotoxicity of Ag, Bi, Te and Tl According to the Biological Indicators of Haplic Chernozem. Applied Sciences, 12(24), 12854. https://doi.org/10.3390/app122412854