Research on the Tooth Surface Integrity of Non-Circular Gear WEDM Based on HPSO Optimization SVR
Abstract
:1. Introduction
2. Hybrid Particle Swarm Optimization
2.1. Standard Particle Swarm Optimization
2.2. Inertia Weight of Decreasing Oscillation
2.3. Trade-off Strategy of Particle Local Search and Global Search
- 1.
- When |A| < 1, the HPSO performs a local search: quickly approaching the optimal solution;
- 2.
- When |A| ≥ 1, the HPSO performs a global search: it is beneficial to jump out of the local optimal solution.
2.4. Performance Test of HPSO
3. Experimentation and Methods
3.1. Experimental Equipment and Materials
3.2. Selection of Non-Circular Gears and Orthogonal Test Scheme
3.3. Measurement and Malculation of Evaluation Indicators
- 1.
- Surface roughness
- 2.
- Surface residual stress
- 3.
- Surface microhardness
3.4. Support Vector Regression
4. Results and Discussion
4.1. Analysis of Surface Roughness
4.2. Analysis of Surface Residual Stress
4.3. Analysis of Surface Microhardness
4.4. Comparison of Model Performance
5. Conclusions
- By comparison, the innovative HPSO in this paper was superior to the traditional particle swarm optimization algorithm with concave function inertia weight, in terms of the convergence accuracy and convergence speed.
- The results of the ANOVA analysis of surface roughness, surface residual stress, and surface microhardness showed that pulse-on time and peak current were the main process parameters affecting the surface roughness, surface residual stress, and surface microhardness.
- To build the SVR model, three different kernel functions were utilized. The results demonstrated that the rbf kernel function had better performance in the prediction model of surface roughness, surface residual stress, and surface microhardness (surface roughness: R2 = 0.996671, MAPE = 1.276123, surface residual stress: R2 = 0.999188, MAPE = 0.415134, surface microhardness: R2 = 0.99411, MAPE = 0.301652).
- Comparing the actual value and the predicted value, R2 was greater than 0.9, thus using the HPSO optimized SVR model could achieve high-performance prediction of surface roughness, surface residual stress, and surface microhardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pramanik, A.; Basak, A.; Islam, M.N.; Littlefair, G. Electrical discharge machining of 6061 aluminium alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 2866–2874. [Google Scholar] [CrossRef]
- Urtekin, L.; Özerkan, H.B.; Cogun, C.; Genc, A.; Esen, Z.; Bozkurt, F. Experimental investigation on wire electric discharge machining of biodegradable AZ91 Mg alloy. J. Mater. Eng. Perform. 2021, 30, 7752–7761. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Zhang, Z.; Zhang, Y.; Huang, Y. Effect of assisted transverse magnetic field on distortion behavior of thin-walled components in WEDM process. Chin. J. Aeronaut. 2022, 35, 291–307. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.; Parikh, D.; Wankhede, V.; Khanna, S. Multi-response optimization of WEDM parameters using an integrated approach of RSM–GRA analysis for pure titanium. J. Inst. Eng. (India) Ser. D 2020, 101, 117–126. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Pramanik, A.; Parikh, D. Optimization of parameters of spark erosion based processes. In Spark Erosion Machining; CRC Press: Boca Raton, FL, USA, 2020; pp. 190–216. [Google Scholar]
- Lalwani, V.; Sharma, P.; Pruncu, C.I.; Unune, D.R. Response surface methodology and artificial neural network-based models for predicting performance of wire electrical discharge machining of inconel 718 alloy. J. Manuf. Mater. Process. 2020, 4, 44. [Google Scholar] [CrossRef]
- Sheth, M.; Gajjar, K.; Jain, A.; Shah, V.; Patel, H.; Chaudhari, R.; Vora, J. Multi-objective optimization of inconel 718 using Combined approach of taguchi—Grey relational analysis. In Advances in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 229–235. [Google Scholar]
- Chaudhari, R.; Vora, J.J.; Prabu, S.; Palani, I.; Patel, V.K.; Parikh, D. Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm. Adv. Manuf. 2021, 9, 64–80. [Google Scholar] [CrossRef]
- Sałaciński, T.; Przesmycki, A.; Chmielewski, T. Technological aspects in manufacturing of non-circular gears. Appl. Sci. 2020, 10, 3420. [Google Scholar] [CrossRef]
- Sari, D.; Welling, D.; Löpenhaus, C.; Klocke, F.; Klink, A. Adjusting surface integrity of gears using wire EDM to increase the flank load carrying capacity. Procedia CIRP 2016, 45, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Lauwers, B.; Kruth, J.-P.; Liu, W.; Eeraerts, W.; Schacht, B.; Bleys, P. Investigation of material removal mechanisms in EDM of composite ceramic materials. J. Mater. Process. Technol. 2004, 149, 347–352. [Google Scholar] [CrossRef]
- Kryzhanivskyy, V.; M’Saoubi, R.; Bhallamudi, M.; Cekal, M. Machine Learning based Approach for the Prediction of Surface Integrity in Machining. Procedia CIRP 2022, 108, 537–542. [Google Scholar] [CrossRef]
- Alade, I.O.; Olumegbon, I.A.; Bagudu, A. Lattice constant prediction of A2XY6 cubic crystals (A = K, Cs, Rb, TI; X = tetravalent cation; Y= F, Cl, Br, I) using computational intelligence approach. J. Appl. Phys. 2020, 127, 015303. [Google Scholar] [CrossRef]
- Altay, O.; Gurgenc, T.; Ulas, M.; Özel, C. Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms. Friction 2020, 8, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Gurgenc, T.; Ucar, F.; Korkmaz, D.; Ozel, C.; Ortac, Y. A study on the extreme learning machine based prediction of machining times of the cycloidal gears in CNC milling machines. Prod. Eng. 2019, 13, 635–647. [Google Scholar] [CrossRef]
- Chou, P.-H.; Hwang, Y.-R.; Yan, B.-H. The study of machine learning for wire rupture prediction in WEDM. Int. J. Adv. Manuf. Technol. 2022, 119, 1301–1311. [Google Scholar] [CrossRef]
- Shakeri, S.; Ghassemi, A.; Hassani, M.; Hajian, A. Investigation of material removal rate and surface roughness in wire electrical discharge machining process for cementation alloy steel using artificial neural network. Int. J. Adv. Manuf. Technol. 2016, 82, 549–557. [Google Scholar] [CrossRef]
- Verma, A.S.; Singh, S. Experimental investigation and prediction modelling of slicing speed and surface roughness during wafer slicing using WEDM. Eng. Res. Express 2022, 4, 035028. [Google Scholar] [CrossRef]
- Xiang, G.; Zhang, Q. Multi-object optimization of titanium alloy milling process using support vector machine and NSGA-II algorithm. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 35. [Google Scholar] [CrossRef]
- Huang, G.; Xia, W.; Qin, L.; Zhao, W. Online workpiece height estimation for reciprocated traveling wire EDM based on support vector machine. Procedia CIRP 2018, 68, 126–131. [Google Scholar] [CrossRef]
- Mathew, J.; Griffin, J.; Alamaniotis, M.; Kanarachos, S.; Fitzpatrick, M.E. Prediction of welding residual stresses using machine learning: Comparison between neural networks and neuro-fuzzy systems. Appl. Soft Comput. 2018, 70, 131–146. [Google Scholar] [CrossRef]
- Kumar, P.; Dewangan, S.; Pandey, C. Analysis of surface integrity and dimensional accuracy in EDM of P91 steels. Mater. Today Proc. 2020, 33, 5378–5383. [Google Scholar] [CrossRef]
- Feng, Y.; Hong, Z.; Gao, Y.; Lu, R.; Wang, Y.; Tan, J. Optimization of variable blank holder force in deep drawing based on support vector regression model and trust region. Int. J. Adv. Manuf. Technol. 2019, 105, 4265–4278. [Google Scholar] [CrossRef]
- Xingmmin, Y.; Zhenxin, P.; Fuying, P. Research on Prediction of Surface Integrity Based on Ultra High Strength Steel 45 CrNiMoVA. New Technol. New Process 2019, 4, 39–43. [Google Scholar] [CrossRef]
- Jain, N.; Nangia, U.; Jain, J. A review of particle swarm optimization. J. Inst. Eng. (India) Ser. B 2018, 99, 407–411. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Sibalija, T.V.; Kumar, S.; Patel, G. A soft computing-based study on WEDM optimization in processing Inconel 625. Neural Comput. Appl. 2021, 33, 11985–12006. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Yongping, L.; Peng, W.; Xilong, X.; Shiyi, Z. Design of the Tooth Profile of Pascal Curve Gear. J. Mech. Transm. 2015, 39, 50–52. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Sharafi, H.; Ebtehaj, I.; Bonakdari, H.; Zaji, A.H. Design of a support vector machine with different kernel functions to predict scour depth around bridge piers. Nat. Hazards 2016, 84, 2145–2162. [Google Scholar] [CrossRef]
- Ulas, M.; Aydur, O.; Gurgenc, T.; Ozel, C. Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms. J. Mater. Res. Technol. 2020, 9, 12512–12524. [Google Scholar] [CrossRef]
- Sun, W.; Xu, C. Carbon price prediction based on modified wavelet least square support vector machine. Sci. Total Environ. 2021, 754, 142052. [Google Scholar] [CrossRef]
- D’addona, D.; Raykar, S.J. Analysis of surface roughness in hard turning using wiper insert geometry. Procedia CIRP 2016, 41, 841–846. [Google Scholar] [CrossRef]
- Goyal, A.; Ur Rahman, H. Experimental studies on Wire EDM for surface roughness and kerf width for shape memory alloy. Sādhanā 2021, 46, 1–13. [Google Scholar] [CrossRef]
- Rao, P.S.; Ramji, K.; Satyanarayana, B. Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy. Alex. Eng. J. 2016, 55, 1077–1084. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshini, M.; Vishwanatha, H.; Biswas, C.K.; Singhal, P.; Buddhi, D.; Behera, A. Effect of grey relational optimization of process parameters on surface and tribological characteristics of annealed AISI P20 tool steel machined using wire EDM. Int. J. Interact. Des. Manuf. (IJIDeM) 2022. [Google Scholar] [CrossRef]
Test Function | Expression | Dimension (d) | Search Range |
---|---|---|---|
Sphere | 10 | * | |
Rosenbrock | 10 | ||
Griewank | 10 | ||
Rastrigin | 10 |
Test Function | Mean Value | Mean Square Deviation | Time | |||
---|---|---|---|---|---|---|
HPSO | PSO | HPSO | PSO | HPSO | PSO | |
Sphere | −0.01 | −0.1 | 0.000406 | 0.0338 | 36.17 | 36.55 |
Rosenbrock | −10.12 | −52.49 | 118.94 | 6649.50 | 55.27 | 55.73 |
Griewank | −0.99948 | −0.99897 | 0.99897 | 0.99906 | 63.42 | 63.61 |
Rastrigin | −27.22 | −40.74 | 1224.72 | 1766.43 | 96.17 | 96.24 |
C | Si | Mn | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|
0.42–0.50 | 0.17–0.37 | 0.5–0.8 | ≤0.25 | ≤0.25 | ≤0.25 | Bal. |
Factor | Peak Current (I/A) A | Pulse-On Time (t/μs) B | Pulse-Off Time (t/μs) C | Tracking (HZ/s) D | |
---|---|---|---|---|---|
Level | |||||
1 | 1 | 8 | 5 | 300 | |
2 | 2 | 16 | 6 | 350 | |
3 | 3 | 24 | 7 | 400 | |
4 | 4 | 32 | 8 | 450 |
Trial | A | B | C | D |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 1 | 4 | 4 | 4 |
5 | 2 | 1 | 2 | 3 |
6 | 2 | 2 | 1 | 4 |
7 | 2 | 3 | 4 | 1 |
8 | 2 | 4 | 3 | 2 |
9 | 3 | 1 | 3 | 4 |
10 | 3 | 2 | 4 | 3 |
11 | 3 | 3 | 1 | 2 |
12 | 3 | 4 | 2 | 1 |
13 | 4 | 1 | 4 | 2 |
14 | 4 | 2 | 3 | 1 |
15 | 4 | 3 | 2 | 4 |
16 | 4 | 4 | 1 | 3 |
Kernel Name | Kernel Equation | Kernel Constant |
---|---|---|
poly | ||
rbf | ||
sigmoid |
Trial | A | B | C | D | SR (μm) | RS (MPa) | MH (HV) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 3.7545 | 95.19544 | 356.4 |
2 | 1 | 2 | 2 | 2 | 3.9214 | 101.1058 | 364.6 |
3 | 1 | 3 | 3 | 3 | 3.7459 | 107.491 | 375.0 |
4 | 1 | 4 | 4 | 4 | 3.6147 | 114.351 | 382.7 |
5 | 2 | 1 | 2 | 3 | 2.7551 | 99.78 | 368.0 |
6 | 2 | 2 | 1 | 4 | 3.0905 | 106.234 | 377.78 |
7 | 2 | 3 | 4 | 1 | 4.2163 | 114.491 | 391.95 |
8 | 2 | 4 | 3 | 2 | 5.558 | 121.351 | 397.5 |
9 | 3 | 1 | 3 | 4 | 3.6059 | 105.0054 | 381.5 |
10 | 3 | 2 | 4 | 3 | 4.5576 | 110.4558 | 395.7 |
11 | 3 | 3 | 1 | 2 | 5.51 | 117.381 | 415.1 |
12 | 3 | 4 | 2 | 1 | 6.46 | 147.781 | 418.7 |
13 | 4 | 1 | 4 | 2 | 3.6672 | 127.4054 | 390.3 |
14 | 4 | 2 | 3 | 1 | 4.1078 | 156.8558 | 396.8 |
15 | 4 | 3 | 2 | 4 | 5.0015 | 139.7 | 422.6 |
16 | 4 | 4 | 1 | 3 | 6.35 | 170.101 | 432.2 |
Source | DF | Adj SS | F-Value | p-Value | Contribution |
---|---|---|---|---|---|
peak current | 3 | 3.0878 | 16.03 | 0.024 | 18.64% |
pulse-on time | 3 | 10.9705 | 56.96 | 0.004 | 56.98% |
pulse-off time | 3 | 2.0925 | 10.87 | 0.040 | 6.35% |
tracking | 3 | 2.7941 | 14.51 | 0.027 | 16.87% |
Error | 3 | 0.1926 | 1.16% | ||
Total | 15 | 100.00% |
Source | DF | Adj SS | F-Value | p-Value | Contribution |
---|---|---|---|---|---|
peak current | 3 | 4559.47 | 28.79 | 0.010 | 63.47% |
pulse-on time | 3 | 2038.99 | 12.88 | 0.032 | 28.39% |
pulse-off time | 3 | 35.09 | 0.22 | 0.876 | 0.75% |
tracking | 3 | 372.56 | 2.35 | 0.250 | 5.19% |
Error | 3 | 158.36 | 2.20% | ||
Total | 15 | 100.00% |
Source | DF | Adj SS | F-Value | p-Value | Contribution |
---|---|---|---|---|---|
peak current | 3 | 4087.97 | 235.90 | 0.000 | 57.18% |
pulse-on time | 3 | 2885.97 | 166.54 | 0.001 | 40.46% |
pulse-off time | 3 | 143.56 | 8.28 | 0.058 | 1.87% |
tracking | 3 | 17.91 | 1.03 | 0.489 | 0.25% |
Error | 3 | 17.33 | 0.24% | ||
Total | 15 | 100.00% |
Kernel Name | Surface Roughness | Surface Residual Stress | Surface Microhardness | |||
---|---|---|---|---|---|---|
R2 | MAPE | R2 | MAPE | R2 | MAPE | |
poly | 0.9624 | 5.4115 | 0.9716 | 2.3867 | 0.9533 | 0.7808 |
rbf | 0.9967 | 1.2761 | 0.9992 | 0.4151 | 0.9941 | 0.3017 |
sigmoid | 0.9347 | 4.9032 | 0.9357 | 3.4287 | 0.9926 | 0.4168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, Q.; Wang, Y.; Wu, D.; Zhang, L.; Shen, B. Research on the Tooth Surface Integrity of Non-Circular Gear WEDM Based on HPSO Optimization SVR. Appl. Sci. 2022, 12, 12858. https://doi.org/10.3390/app122412858
Zhao J, Wang Q, Wang Y, Wu D, Zhang L, Shen B. Research on the Tooth Surface Integrity of Non-Circular Gear WEDM Based on HPSO Optimization SVR. Applied Sciences. 2022; 12(24):12858. https://doi.org/10.3390/app122412858
Chicago/Turabian StyleZhao, Jiali, Qing Wang, Yazhou Wang, Dan Wu, Liang Zhang, and Bobo Shen. 2022. "Research on the Tooth Surface Integrity of Non-Circular Gear WEDM Based on HPSO Optimization SVR" Applied Sciences 12, no. 24: 12858. https://doi.org/10.3390/app122412858
APA StyleZhao, J., Wang, Q., Wang, Y., Wu, D., Zhang, L., & Shen, B. (2022). Research on the Tooth Surface Integrity of Non-Circular Gear WEDM Based on HPSO Optimization SVR. Applied Sciences, 12(24), 12858. https://doi.org/10.3390/app122412858