Long-Term Behavior of Concrete Containing Wood Biomass Fly Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Properties of Wood Fly Ash
2.2. Concrete Mix Design
2.3. Testing Methods
3. Results and Discussion
3.1. Fresh Concrete Properties
3.2. Density, Porosity, and Permeability
3.3. Compressive Strength
3.4. Drying Shrinkage
4. Conclusions
- Depending on the type of WFA, the 15% WFA content reduced the 28-day strength of the concrete by 6 to 14%, while the long-term strength was reduced by 8 to 17%.
- At 30% WFA, the compressive strength at 28 days of age was 25 to 37% lower compared to the reference mix.
- When testing the drying shrinkage of the mixes during more than one year, a significant decrease in shrinkage was observed in the mixes with 30% WFA compared to the reference mix, but in the case of WFA2, the swelling deformation was also pronounced at an early age, which was probably caused by a significant amount of free MgO and free CaO; the TG analysis showed that the mixes with WF2 contained brucite, which can also partially cause the increase in the initial volume.
- WFA1, at a 15% content, unlike WFA2, did not have a large contribution to shrinkage reduction compared to the reference mix.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union; Sanchez Lopez, J., Avraamides, M., Eds.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Gabrijel, I.; Jelčić Rukavina, M.; Štirmer, N. Influence of wood fly ash on concrete properties through filling effect mechanism. Materials 2021, 14, 7164. [Google Scholar] [CrossRef] [PubMed]
- Karltun, E.; Saarsalmi, A.; Ingerslev, M.; Mandre, M.; Andersson, S.; Gaitnieks, T.; Ozolinčius, R.; Varnagiryte-Kabasinskiene, I. Wood Ash Recycling—Possibilities and Risks. In Sustainable Use of Forest Biomass for Energy: A Synthesis with Focus on the Baltic and Nordic Region; Springer: Dordrecht, The Netherlands, 2008; pp. 79–108. [Google Scholar] [CrossRef]
- Pettersson, M.; Björnsson, L.; Börjesson, P. Recycling of ash from co-incineration of waste wood and forest fuels: An overlooked challenge in a circular bioenergy system. Biomass Bioenergy 2020, 142, 105713. [Google Scholar] [CrossRef]
- Agrela, F.; Cabrera, M.; Morales, M.M.; Zamorano, M.; Alshaaer, M. Biomass fly ash and biomass bottom ash. In New Trends in Eco-Efficient and Recycled Concrete; Woodhead Publishing: Sawston, UK, 2019; pp. 23–58. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Obernberger, I.; Supancic, K. Possibilities of Ash Utilisation from Biomass Combustion Plants. In Proceedings of the 17th European Biomass Conference and Exhibition, Hamburg, Germany, 29 June–3 July 2009; pp. 2372–2384. [Google Scholar]
- Gupt, C.B.; Bordoloi, S.; Sekharan, S.; Sarmah, A.K. A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner. Environ. Pollut. 2020, 265, 114811. [Google Scholar] [CrossRef] [PubMed]
- Kuznia, M.; Magiera, A.; Zygmunt-Kowalska, B.; Kaczorek-Chrobak, K.; Pielichowska, K.; Szatkowski, P.; Benko, A.; Ziabka, M.; Jerzak, W. Fly Ash as an Eco-Friendly Filler for Rigid Polyurethane Foams Modification. Materials 2021, 14, 6604. [Google Scholar] [CrossRef] [PubMed]
- Fusade, L.; Viles, H.; Wood, C.; Burns, C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019, 212, 500–513. [Google Scholar] [CrossRef]
- Ekinci, A.; Hanafi, M.; Aydin, E. Strength, Stiffness, and Microstructure of Wood-Ash Stabilized Marine Clay. Minerals 2020, 10, 796. [Google Scholar] [CrossRef]
- Longo, F.; Cascardi, A.; Lassandro, P.; Aiello, M. A New Fabric Reinforced Geopolymer Mortar (FRGM) with Mechanical and Energy Benefits. Fibers 2020, 8, 49. [Google Scholar] [CrossRef]
- Longo, F.; Cascardi, A.; Lassandro, P.; Aiello, M.A. Energy and seismic drawbacks of masonry: A unified retrofitting solution. J. Build. Pathol. Rehabil. 2021, 6, 1–24. [Google Scholar] [CrossRef]
- EN 450-1; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Conc. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Ibrahim, Y.E.; Adamu, M.; Marouf, M.L.; Ahmed, O.S.; Drmosh, Q.A.; Malik, M.A. Mechanical Performance of Date-Palm-Fiber-Reinforced Concrete Containing Silica Fume. Buildings 2022, 12, 1642. [Google Scholar] [CrossRef]
- Khan, K.; Ahmad, W.; Amin, M.N.; Nazar, S. Nano-Silica-Modified Concrete: A Bibliographic Analysis and Comprehensive Review of Material Properties. Nanomaterials 2022, 12, 1989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Han, S.; Golewski, G.L.; Wang, X. Nanoparticle-reinforced building materials with applications in civil engineering. Adv. Mech. Eng. 2020, 12, 1687814020965438. [Google Scholar] [CrossRef]
- Milovanović, B.; Štirmer, N.; Carević, I.; Baričević, A. Wood biomass ash as a raw material in concrete industry. J. Croat. Assoc. Civ. Eng. 2019, 71, 505–514. [Google Scholar] [CrossRef]
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B. Reuse of Woody Biomass Ash Waste in Cementitious Materials. Chem. Biochem. Eng. Q. 2016, 30, 137–148. [Google Scholar] [CrossRef]
- Rissanen, J.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Partial Replacement of Portland-Composite Cement by Fluidized Bed Combustion Fly Ash. J. Mater. Civ. Eng. 2017, 29, 04017061. [Google Scholar] [CrossRef] [Green Version]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- Maschio, S.; Tonello, G.; Piani, L.; Furlani, E. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: Rheological behaviour of the pastes and materials compression strength. Chemosphere 2011, 85, 666–671. [Google Scholar] [CrossRef]
- Carević, I.; Baričević, A.; Štirmer, N.; Šantek Bajto, J. Correlation between physical and chemical properties of wood biomass ash and cement composites performances. Constr. Build. Mater. 2020, 256, 119450. [Google Scholar] [CrossRef]
- Lazik, P.R.; Bošnjak, J.; Cetin, E.; Kücük, A. Application of wood ash as a substitute for fly ash and investigation of concrete properties. Otto-Graf-J. 2020, 19, 103–118. [Google Scholar]
- Carević, I.; Štirmer, N.; Serdar, M.; Ukrainczyk, N. Effect of Wood Biomass Ash Storage on the Properties of Cement Composites. Materials 2021, 14, 1632. [Google Scholar] [CrossRef] [PubMed]
- Kaminskas, R.; Cesnauskas, V. Influence of activated biomass fly ash on portland cement hydration. Ceram.-Silik. 2014, 58, 260–268. [Google Scholar]
- Šantek Bajto, J.; Štirmer, N.; Cerković, S.; Carević, I.; Jurić, K.K. Pilot Scale Production of Precast Concrete Elements with Wood Biomass Ash. Materials 2021, 14, 6578. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, S.; Koppejan, J. (Eds.) The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008. [Google Scholar]
- ISO/TS 16996; Solid Biofuels—Determination of Elemental Composition by X-ray Fluorescence. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- ASTM D7348-13; Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. ASTM International: West Conshohocken, PA, USA, 2013.
- EN 12176; Characterization of Sludge—Determination of pH-Value. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C188-17; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- EN 197-1; Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- EN 480-1; Admixtures for Concrete, Mortar and Grout—Test Methods—Part 1: Reference Concrete and Reference Mortar for Testing. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- EN 12350-2; Testing Fresh Concrete—Part 2: Slump-Test. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 12350-6; Testing Fresh Concrete—Part 6: Density. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 12350-7; Testing Fresh Concrete—Part 7: Air Content—Pressure Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 12390-3; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- Safiuddin, M.; Hearn, N. Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete. Cem. Concr. Res. 2005, 35, 1008–1013. [Google Scholar] [CrossRef]
- ASTM C1202-19; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2019.
- Bentz, D.; Peltz, M.A.; Duran-Herrera, A.; Valdez, P.; Juarez, C. Thermal properties of high-volume fly ash mortars and concretes. J. Build. Phys. 2011, 34, 263–275. [Google Scholar] [CrossRef]
- Qomi, A.; Javad, M.; Ulm, F.-J.; Pellenq, R.J.-M. Physical Origins of Thermal Properties of Cement Paste. Phys. Rev. Applied 2015, 3, 064010. [Google Scholar] [CrossRef] [Green Version]
- Schön, J. Physical Properties of Rocks A Workbook; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Hewlett, P.; Liska, M. (Eds.) Lea’s Chemistry of Cement and Concrete, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2003. [Google Scholar]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef]
- Jakob, C.; Jansen, D.; Ukrainczyk, N.; Koenders, E.; Pott, U.; Stephan, D.; Neubauer, J. Relating Ettringite Formation and Rheological Changes during the Initial Cement Hydration: A Comparative Study Applying XRD Analysis, Rheological Measurements and Modeling. Materials 2019, 12, 2957. [Google Scholar] [CrossRef]
- Winnefeld, F.; Zingg, A.; Holzer, L.; Pakusch, J.; Becker, S. The Ettringite-Superplasticizer Interaction and Its Impact on the Ettringite Distribution in Cement Suspensions. Available online: https://www.researchgate.net/profile/Frank-Winnefeld/publication/292020501_Ettringite-superplasticizer_interaction_and_its_impact_on_the_ettringite_distribution_in_cement_suspensions/links/5c2f2ef5a6fdccd6b58ff152/Ettringite-superplasticizer-interaction-and-its-impact-on-the-ettringite-distribution-in-cement-suspensions.pdf (accessed on 10 October 2021).
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Wesche, K. (Ed.) Report of Technical Committee 67-FAB Use of Fly Ash in Building RILEM, Fly Ash in Concrete Properties and Performance; E. & F.N. Spon: London, UK, 1991. [Google Scholar]
- Bjegović, D.; Serdar, M.; Stipanović Oslaković, I.; Jacobs, F.; Beushausen, H.; Andrade, C.; Monteiro, A.V.; Paulini, P.; Nanukuttan, S. Test Methods for Concrete Durability Indicators. In Performance-Based Specifications and Control of Concrete Durability; Beushausen, H., Fernandez Luco, L., Eds.; RILEM State-of-the-Art Reports; Springer: Dordrecht, The Netherlands, 2016; Volume 18. [Google Scholar] [CrossRef]
- Zhang, D.; Li, K. Concrete gas permeability from different methods: Correlation analysis. Cem. Con. Compos. 2019, 104, 103379. [Google Scholar] [CrossRef]
- Kollek, J.J. The Determination of the Permeability of Concrete to Oxygen by the CEMBUREAU Method—A Recommendation. Mater. Struct. 1989, 22, 225–230. [Google Scholar] [CrossRef]
- Kropp, J. Concrete durability—an approach towards performance testing. Mater. Struct. 1999, 32, 163–173. [Google Scholar]
- Gui, Q.; Qin, M.; Li, K. Gas permeability and electrical conductivity of structural concretes: Impact of pore structure and pore saturation. Cem. Conc. Res 2016, 89, 109–119. [Google Scholar] [CrossRef]
- Grau, F.; Choo, H.; Hu, J.W.; Jung, J. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash. Materials 2015, 8, 6962–6977. [Google Scholar] [CrossRef] [Green Version]
- Cheah, C.B.; Ramli, M. Mechanical strength, durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Constr. Build. Mater. 2012, 30, 320–329. [Google Scholar] [CrossRef]
- Elinwa, A.U.; Mahmood, Y.A. Ash from timber waste as cement replacement material. Cem. Concr. Compos. 2002, 24, 219–222. [Google Scholar] [CrossRef]
- Udoeyo, F.F.; Inyang, H.; Young, D.T.; Oparadu, E.E. Potential of Wood Waste Ash as an Additive in Concrete. J. Mater. Civ. Eng. 2006, 18, 605–611. [Google Scholar] [CrossRef]
- Ding, Y.; Mao, Z.; Wang, Y. Micro-change process of Calcium–Magnesium double expansive agent and its performance characterization in cement-based materials. Materials 2021, 14, 3269. [Google Scholar] [CrossRef]
- Du, C. A review of Magnesium oxide in concrete, Conc. Int. 2005, 27(12), 45–50. [Google Scholar]
- Gao, P.; Lu, X.; Geng, F.; Li, X.; Hou, J.; Lin, H.; Shi, N. Production of MgO-type expansive agent in dam concrete by use of industrial by-products. Build. Env. 2008, 43, 453–457. [Google Scholar] [CrossRef]
- Gao, P.; Shao-yun, X.; Xiong, C.; Jun, L.; Xiao-lin, L. Research on autogenous volume deformation of concrete with MgO. Constr. Build. Mater. 2013, 40, 998–1001. [Google Scholar] [CrossRef]
- Gardeh, M.G.; Kistanov, A.A.; Nguyen, H.; Manzano, H.; Cao, W.; Kinnunen, P. Exploring mechanisms of hydration and carbonation of MgO and Mg(OH)2 in reactive magnesium oxide-based cements. J. Phys. Chem. C. 2022, 126, 6196–6206. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Geng, F.; Hongbo, Z.; Chen, X. Influence of MgO-type expansive agent hydration behaviors on expansive properties of concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2011, 26, 344–346. [Google Scholar] [CrossRef]
- Mahmood, A.; Kaish, A.B.M.A.; Gulam, N.F.B.A.; Raman, S.; Jamil, M.; Hamid, R. Effects of MgO-based expansive agent on the characteristics of expansive concrete. Eng. Proc. 2011, 11, 14. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, Q.; Lu, A. Influence of CaO-based expansive agent on the deformation behavior of high performance concrete. Appl. Mech. Mater. 2013, 438, 113–116. [Google Scholar] [CrossRef]
- Gagne, R. Expansive agents. In Science and Technology of Concrete Admixtures; Woodhead Publishing: Sawston, UK, 2016; pp. 441–456. [Google Scholar]
- Zhao, H.; Liu, H.; Wan, Y.; Ghantous, R.M.; Jinghao Li, J.; Liu, Y.; Ni, Y.G.J. Mechanical properties and autogenous deformation behavior of early-age concrete containing pre-wetted ceramsite and CaO-based expansive agent. Constr. Build. Mater. 2021, 267, 120992. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Conc. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G. Thermal decomposition of natural dolomite. Bull. Mater. Sci. 2007, 30, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Lothenbach, B.; Durdzinski, P.; De Veerdt, K. Thermogravimetric analysis. In A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2016; pp. 177–212. [Google Scholar]
- Collier, N.C. Transition and decomposition temperatures of cement phases—A collection of thermal analysis data. Ceram.-Silik. 2016, 60, 338–343. [Google Scholar] [CrossRef]
- Galí, S.; Ayora, C.; Alfonso, P.; Tauler, E.; Labrador, M. Kinetics of dolomite–portlandite reaction: Application to portland cement concrete. Cem. Conc. Res. 2001, 31, 933–939. [Google Scholar] [CrossRef]
- Zhang, X.; Glasser, F.; Scrivener, K. Reaction kinetics of dolomite and portlandite. Cem. Con. Res. 2014, 66, 11–18. [Google Scholar] [CrossRef]
- Garcia, E.; Alfonso, P.; Tauler, E. Mineralogical Characterization of Dolomitic Aggregate Concrete: The Camarasa Dam (Catalonia, Spain). Minerals 2020, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Katayama, T. How to identify carbonate rock reaction in concrete. Mater. Charact. 2004, 53, 85–104. [Google Scholar] [CrossRef]
- Katayama, T. The so-called alkali-carbonate reaction (ACR)—Its mineralogical and geochemical details, with special reference to ASR. Cem. Conc. Res. 2010, 40, 643–675. [Google Scholar] [CrossRef]
- Knežević, M. Properties of Concrete Incorporating Wood Ash. Master’s Thesis, Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia, 2018. (In Croatian). [Google Scholar]
- Deng, M.; Hong, D.; Lan, X.; Tang, M. Mechanism of expansion in hardened cement pastes with hard-burnt free lime. Cem. Con. Res. 1995, 25, 440–448. [Google Scholar] [CrossRef]
- Courard, L.; Darimont, H.D.A. Effects of the presence of free lime nodules into concrete: Experimentation and modelling. Cem. Con. Res. 2014, 64, 73–88. [Google Scholar] [CrossRef]
- Wolterbeek, T.K.T.; van Noort, R.; Spiers, C.J. Reaction-driven casing expansion: Potential for wellbore leakage mitigation. Acta Geotech. 2018, 13, 341–366. [Google Scholar] [CrossRef] [Green Version]
- Chatterji, S. Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO. Cem. Con. Res. 1995, 25, 51–56. [Google Scholar] [CrossRef]
Property | CEM | WFA1 | WFA2 |
---|---|---|---|
P2O5 | 0.22 | 1.40 | 1.97 |
Na2O | 0.85 | 2.12 | 0.57 |
K2O | 1.25 | 5.28 | 8.10 |
CaO | 59.80 | 18.58 | 57.93 |
MgO | 2.01 | 3.68 | 6.17 |
Al2O3 | 4.94 | 12.42 | 3.14 |
TiO2 | 0.23 | 1.21 | 0.13 |
Fe2O3 | 3.15 | 4.78 | 2.1 |
SiO2 | 21.88 | 49.34 | 18.19 |
SO3 | 3.33 | 1.17 | 1.70 |
Pozzolanic oxides (SiO2 + Al2O3 + Fe2O3) | 29.97 | 66.54 | 23.43 |
Alkalis (Na2O + 0.658 K2O) | 1.67 | 5.59 | 5.90 |
LOI (at 950 °C) | 3.6 | 6.0 | 3.0 |
pH | 12.9 | 12.9 | 13.2 |
Density | 3.1 | 2.0 | 2.7 |
Mix Designation | M0 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|
Cement (kg) | 400 | 340 | 280 | 340 | 280 |
WFA cement replacement (%) | 0 | 15 | 30 | 15 | 30 |
WFA content (kg) | 0 | 60 | 120 | 60 | 120 |
Cement + WFA (kg) | 400 | ||||
w/(cem. + WFA) ratio | 0.5 | ||||
Water (kg) | 200 | ||||
Aggregate (kg) | 1831 | 1802 | 1780 | 1805 | 1796 |
Fine aggregate (kg) | 652 | 641 | 634 | 642 | 639 |
Coarse aggregate (kg) | 1179 | 1161 | 1146 | 1163 | 1157 |
Mix Designation | M0 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|
Fresh density (kg/m3) | 2450 | 2460 | 2440 | 2460 | 2450 |
Air content (%) | 1.5 | 1.4 | 1.5 | 1.0 | 1.1 |
Slump (mm) | 80 | 60 | 50 | 60 | 20 |
Measured initial temperature (°C) | 23.5 | 26.8 | 25.0 | 25.1 | 25.0 |
Calculated initial temperature (°C) | 19.7 | 21.9 | 20.8 | 19.7 | 18.1 |
ΔT (°C) | 3.9 | 4.9 | 4.2 | 5.4 | 6.9 |
Mix Designation | M0 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|
Bulk dry density (kg/m3) | 2355.9 | 2349.7 | 2297.3 | 2362.1 | 2339.8 |
(±22.6) | (±10.0) | (±23.9) | (±17.4) | (±8.7) | |
Bulk saturated density (kg/m3) | 2504.2 | 2493.9 | 2452.6 | 2503.5 | 2487.0 |
(±16.0) | (±6.3) | (±16.9) | (±14.2) | (±6.3) | |
Apparent solid density (kg/m3) | 2766.0 | 2745.5 | 2719.9 | 2751.0 | 2743.7 |
(±5.7) | (±2.3) | (±8.7) | (±11.3) | (±11.7) | |
Apparent porosity (%) | 14.83 | 14.42 | 15.54 | 14.14 | 14.72 |
(±0.67) | (±0.39) | (±0.74) | (±0.39) | (±0.51) | |
The numbers in brackets are standard deviations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrijel, I.; Skazlić, M.; Štirmer, N. Long-Term Behavior of Concrete Containing Wood Biomass Fly Ash. Appl. Sci. 2022, 12, 12859. https://doi.org/10.3390/app122412859
Gabrijel I, Skazlić M, Štirmer N. Long-Term Behavior of Concrete Containing Wood Biomass Fly Ash. Applied Sciences. 2022; 12(24):12859. https://doi.org/10.3390/app122412859
Chicago/Turabian StyleGabrijel, Ivan, Marijan Skazlić, and Nina Štirmer. 2022. "Long-Term Behavior of Concrete Containing Wood Biomass Fly Ash" Applied Sciences 12, no. 24: 12859. https://doi.org/10.3390/app122412859
APA StyleGabrijel, I., Skazlić, M., & Štirmer, N. (2022). Long-Term Behavior of Concrete Containing Wood Biomass Fly Ash. Applied Sciences, 12(24), 12859. https://doi.org/10.3390/app122412859