Feasibility of Application for the SHG Technology of Longitudinal Wave in Quantitatively Evaluating Carbonated Concrete
Abstract
:1. Introduction
2. Non-Linear Parameters of Ultrasonic Waves
3. Materials and Methods
3.1. Specimens
3.2. Accelerated Carbonation Experiments
3.3. Non-Linear Ultrasonic Measurements
4. Results and Discussion
4.1. Influence of Ultrasonic Incident Frequency on Nonlinear Parameters
4.2. Non-Linear Parameters Change of Carbonated Concrete with Two Water–Cement Ratios
4.3. Non-Linear Parameters Change of Carbonated Concrete with Two Moisture Contents
4.4. Relationship between Non-Linear Parameters and Carbonation Progress
5. Conclusions
- The non-linear parameters of ultrasonic waves with frequencies of 75 kHz and 100 kHz are larger than the frequency of 50 kHz. This indicates that the smaller wavelength (higher frequency) of the longitudinal wave has a better resolution to the relative non-linear parameters of carbonated concrete.
- The dryness and humidity of concrete CI also affect the relative non-linear parameters. However, the rates of change (CI: 62.73%, CI-W: 60.25%, carbonation depth: 15 mm) for the non-linear parameters before and after carbonation are similar for the two moisture content samples.
- The relative non-linear parameters for the two specimens with different water–cement ratios vary significantly during the carbonation process. In this study, CII has a higher initial relative non-linear parameter than CI . The carbonation progress of concrete can be well reflected by changes in the relative non-linear parameters. The relative non-linear parameters decrease with the carbonation depth (the completely carbonated zone).
- Although the water–cement ratio, moisture content of concrete, and ultrasonic frequency are different in this study, there exists a relationship between the relative non-linear parameters of longitudinal waves and the concrete carbonation process. This demonstrates the feasibility of quantitative assessment in concrete carbonation with the relative non-linear parameters of longitudinal waves. Based on this, further studies of quantitative assessment in different types of concrete could be undertaken to identify a common relationship.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnet, S.; Balayssac, J.-P. Combination of the Wenner resistivimeter and Torrent permeameter methods for assessing carbonation depth and saturation level of concrete. Constr. Build. Mater. 2018, 188, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.; Mechling, J.M.; Diliberto, C.; Brahim, M.N.; Trauchessec, R.; Lecomte, A.; Bourson, P. Portable quantitative confocal Raman spectroscopy: Non-destructive approach of the carbonation chemistry and kinetics. Cem. Concr. Res. 2021, 139, 106280. [Google Scholar] [CrossRef]
- Eiras, J.N.; Kundu, T.; Popovics, J.S.; Monzó, J.M.; Borrachero, M.V.; Payá, J. Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials. Opt. Eng. 2015, 55, 011004. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.J.; Yeih, W.; Huang, R.; Chi, J.M. Mechanical properties of carbonated concrete. J. Chin. Inst. Eng. 2003, 26, 513–522. [Google Scholar] [CrossRef]
- Bouchaala, F.; Payan, C.; Garnier, V.; Balayssac, J. Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 2011, 41, 557–559. [Google Scholar] [CrossRef]
- Chen, J.; Jayapalan, A.R.; Kim, J.Y.; Kurtis, K.E.; Jacobs, L.J. Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 2010, 40, 914–923. [Google Scholar] [CrossRef]
- Jhang, K.Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 2009, 10, 123–135. [Google Scholar] [CrossRef]
- Kim, G.; In, C.W.; Kim, J.Y.; Kurtis, K.E.; Jacobs, L.J. Air-coupled detection of nonlinear Rayleigh surface waves in concrete—Application to microcracking detection. NDT E Int. 2014, 67, 64–70. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.Y.; Kurtis, K.E.; Jacobs, L.J. Drying shrinkage in concrete assessed by nonlinear ultrasound. Cem. Concr. Res. 2017, 92, 16–20. [Google Scholar] [CrossRef]
- Ongpeng, J.M.C.; Oreta, W.C.; Hirose, S. Effect of load pattern in the generation of higher harmonic amplitude in concrete using nonlinear ultrasonic test. J. Adv. Concr. Technol. 2016, 14, 205–214. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.Y.; Kurtis, K.E.; Jacobs, L.J.; Le Pape, Y.; Guimaraes, M. Quantitative evaluation of carbonation in concrete using nonlinear ultrasound. Mater. Struct. 2016, 49, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yin, T.; Kim, J.Y.; Xu, Z.; Yao, Y. Characterization of thermal damage in sandstone using the second harmonic generation of standing waves. Int. J. Rock Mech. Min. Sci. 2017, 91, 81–89. [Google Scholar] [CrossRef]
- Shah, A.; Ribakov, Y.; Zhang, C. Efficiency and sensitivity of linear and non-linear ultrasonics to identifying micro and macro-scale defects in concrete. Mater. Des. 2013, 50, 905–916. [Google Scholar] [CrossRef]
- Jhang, K.Y. Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Hikata, A.; Chick, B.B.; Elbaum, C. Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 1965, 36, 229–236. [Google Scholar] [CrossRef]
- Matlack, K.H.; Kim, J.Y.; Jacobs, L.J.; Qu, J. Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Evaluat. 2015, 34, 1–23. [Google Scholar] [CrossRef]
- Cantrell, J.H. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters. J. Appl. Phys. 1994, 76, 3372–3380. [Google Scholar] [CrossRef]
- Mario, F.C.L.; Francisco, C.; de J. Cano-Barrita, P.F. Ultrasound frequency analysis for identification of aggregates and cement paste in concrete. Ultrasonics 2017, 73, 88–95. [Google Scholar] [CrossRef]
- Métais, V.; Chekroun, M.; Marrec, L.L. Influence of multiple scattering in heterogeneous concrete on results of the surface wave inverse problem. NDT E Int. 2016, 79, 53–62. [Google Scholar] [CrossRef]
- Philippidis, T.P.; Aggelis, D.G. Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 2005, 43, 584–595. [Google Scholar] [CrossRef]
- Anugonda, P.; Wiehn, J.S.; Turner, J.A. Diffusion of ultrasound in concrete. Ultrasonics 2001, 39, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Ramaniraka, M.; Rakotonarivo, S.; Payan, C.; Garnier, V. Effect of the Interfacial Transition Zone on ultrasonic wave attenuation and velocity in concrete. Cem. Concr. Res. 2019, 124, 105809. [Google Scholar] [CrossRef]
- Punurai, W.; Jarzynski, J.; Qu, J.; Kurtis, K.E.; Jacobs, L.J. Characterization of entrained air voids in cement paste with scattered ultrasound. NDT E Int. 2006, 39, 514–524. [Google Scholar] [CrossRef]
- Peng, Z.; Long, Z. Directivity Analysis of Ultrasonic Array in Directional Sound System. Intell. Robot. Appl. 2021, 43, 149–157. [Google Scholar] [CrossRef]
- Lafhaj, Z.; Goueygou, M.; Djerbi, A.; Kaczmarek, M. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem. Concr. Res. 2006, 36, 625–633. [Google Scholar] [CrossRef]
- Ohdaira, E.; Masuzawa, N. Water content and its effect on ultrasound propagation in concrete—The possibility of NDE. Ultrasonics 2000, 38, 546–552. [Google Scholar] [CrossRef]
- Payan, C.; Garnier, V.; Moysan, J. Potential of nonlinear ultrasonic indicators for nondestructive testing of concrete. Adv. Civ. Eng. 2010, 2010, 238472. [Google Scholar] [CrossRef]
Category | CI | CII |
---|---|---|
Cement (P.O 42.5) (kg/m3) | 415 | 368 |
Fine aggregate (kg/m3) | 609 | 619 |
Coarse aggregate (kg/m3) | 1181 | 1250 |
Water (kg/m3) | 195 | 195 |
Model | () | C () | (%) | () | () |
---|---|---|---|---|---|
PSN-33 | 377 | 1167 | 1.77 | 4.03 | 5.45 |
Exposure Time (Day) | 0 | 14 | 28 | 56 | 120 | |
---|---|---|---|---|---|---|
CI | 5.124 | 3.985 | 2.995 | 2.301 | 1.910 | |
Relative nonlinearity parameter (×10) | CI-W | 4.283 | 3.209 | 2.470 | 1.948 | 1.701 |
CII | 7.861 | 5.657 | 3.766 | 2.730 | 2.181 |
Category | CI | CIW | CII | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(×10) | 5.124 | 3.985 | 2.995 | 1.910 | 4.283 | 3.209 | 2.470 | 1.701 | 7.861 | 5.657 | 3.766 | 2.181 |
cd (mm) | 0 | 6.4 | 9.8 | 14.1 | 0 | 6.4 | 9.8 | 14.1 | 0.4 | 9.5 | 13.7 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wu, J.; Chen, K. Feasibility of Application for the SHG Technology of Longitudinal Wave in Quantitatively Evaluating Carbonated Concrete. Appl. Sci. 2022, 12, 13009. https://doi.org/10.3390/app122413009
Zhao J, Wu J, Chen K. Feasibility of Application for the SHG Technology of Longitudinal Wave in Quantitatively Evaluating Carbonated Concrete. Applied Sciences. 2022; 12(24):13009. https://doi.org/10.3390/app122413009
Chicago/Turabian StyleZhao, Jinzhong, Jin Wu, and Kaixin Chen. 2022. "Feasibility of Application for the SHG Technology of Longitudinal Wave in Quantitatively Evaluating Carbonated Concrete" Applied Sciences 12, no. 24: 13009. https://doi.org/10.3390/app122413009
APA StyleZhao, J., Wu, J., & Chen, K. (2022). Feasibility of Application for the SHG Technology of Longitudinal Wave in Quantitatively Evaluating Carbonated Concrete. Applied Sciences, 12(24), 13009. https://doi.org/10.3390/app122413009