Ultrasonic Attenuation of Ceramic and Inorganic Materials Using the Through-Transmission Method
Abstract
:1. Introduction
2. Buffer-Rod Method
3. Experimental Procedures
4. Results and Discussion
4.1. Hard Ceramics
4.2. Glasses and Common Ceramics
4.3. Other Ceramics, Mortars and Composites
4.4. Rocks and Single Crystals
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Material | E | G | ν | Density | Notes |
---|---|---|---|---|---|---|
GPa | GPa | Mg/m3 | ||||
9 | Bonded SiC | 63.4 | 25.3 | 0.259 | 2.32 | This study |
10 | Bonded Emery | 10.6 | 4.38 | 0.206 | 2.63 | This study |
11 | Fired clay (red brick) | 9.10 | 3.73 | 0.220 | 1.93 | This study |
12 | Fired clay (red planter) | 17.5 | 8.20 | 0.068 | 2.18 | This study |
13 | Clay ceramic (planter) | 43.1 | 17.6 | 0.225 | 2.18 | This study |
14 | Clay ceramic (tile) | 64.4 | 27.9 | 0.155 | 2.34 | This study |
15 | Steatite | 111.1 | 45.4 | 0.225 | 2.78 | This study |
16 | Porcelain | 110.3 | 47.1 | 0.172 | 2.63 | This study |
C15 | BK7 glass | 73.5 | 30.1 | 0.224 | 2.51 | [44] |
C21 | Clay ceramic (tile) | 31.2 | 12.0 | 0.297 | 1.97 | [44] |
C29 | Macor | 60.1 | 24.2 | 0.240 | 2.52 | [44] |
C42 | Pyrex glass | 61.8 | 25.9 | 0.191 | 2.23 | [44] |
C43 | Soda-lime (S-L) glass | 74.3 | 30.4 | 0.223 | 2.48 | [44] |
C44 | S-L glass, tempered | 74.4 | 30.3 | 0.226 | 2.52 | [44] |
C45 | Fused silica | 70.7 | 30.3 | 0.167 | 2.20 | [44] |
Test. | Material | Density | E | G | ν | Notes |
---|---|---|---|---|---|---|
No | Mg/m3 | GPa | GPa | |||
17 | Mortar 10.7% void | 2.00 | 24.18 | 10.22 | 0.184 | Dry |
17a | Mortar 10.7% void | 2.00 | 34.24 | 15.18 | 0.128 | Saturated |
18 | Mortar 22.8% void | 1.73 | 14.72 | 5.99 | 0.230 | Dry |
18 | Mortar 22.8% void | 1.73 | 20.74 | 9.28 | 0.117 | Saturated |
19 | Mortar 31.7% void | 1.54 | 8.81 | 3.94 | 0.117 | Dry |
19 | Mortar 31.7% void | 1.54 | 13.22 | 6.64 | −0.004 | Saturated |
20 | Graphite plate | 1.77 | 15.20 | 6.19 | 0.228 | L; pol//T |
21 | Graphite plate | 1.77 | 14.65 | 5.86 | 0.249 | L; pol//S |
22 | Graphite plate | 1.77 | * | 5.67 | * | T; pol//L |
23 | Graphite plate | 1.77 | 7.81 | 4.20 | −0.070 | T; pol//S |
24 | Graphite plate | 1.77 | * | 7.37 | * | S; pol//L |
25 | Graphite plate | 1.77 | 7.63 | 5.18 | −0.263 | S; pol//T |
26 | Poco graphite rod | 1.71 | 16.17 | 6.50 | 0.271 | axial |
27 | Poco graphite rod | 1.71 | * | 5.24 | * | radial //axial |
28 | Poco graphite rod | 1.71 | 7.08 | 2.98 | 0.188 | radial //circ. |
29 | Pyrolytic graphite | 1.72 | 7.85 | 3.37 | 0.165 | S |
30 | Ferrite (hard magnet) | 4.99 | 163.94 | 64.31 | 0.275 | |
31 | Ferrite (hard magnet) | 5.05 | 169.30 | 66.18 | 0.279 | |
32 | Fe Nd-B magnet | 7.50 | 170.26 | 62.21 | 0.368 | |
33 | MnS | 3.84 | 68.22 | 27.37 | 0.246 | |
34 | ZnSe | 5.24 | 76.57 | 29.43 | 0.301 | |
35 | Gypsum | 1.39 | 8.74 | 4.26 | 0.027 | |
36 | Zeolite composite 1 | 1.11 | 5.14 | 2.37 | 0.086 | |
37 | Zeolite composite 2 | 1.07 | 4.78 | 2.28 | 0.049 | |
38 | Zeolite composite 3 | 0.90 | 3.47 | 1.97 | −0.119 | |
39 | C-C composite | 1.92 | 33.68 | 11.34 | 0.485 | S, pol//R |
40 | C-C composite | 1.92 | 33.68 | 11.34 | 0.485 | S, pol//C |
41 | C-C composite | 1.92 | 27.29 | 9.21 | 0.482 | R, pol//S |
42 | C-C composite | 1.92 | 47.07 | 16.04 | 0.468 | R, pol//C |
43 | C-C composite | 1.92 | 36.68 | 12.39 | 0.480 | C, pol//S |
44 | C-C composite | 1.92 | 34.99 | 11.81 | 0.481 | C, pol//R |
45 | SiC-SiC composite | 2.46 | 174.81 | 68.84 | 0.270 | S, pol//L |
46 | SiC-SiC composite | 2.46 | 208.19 | 91.24 | 0.141 | S, pol//T |
C7 | PZT-5A | 7.78 | 64.85 | 23.02 | 0.409 | [44], pol#//L |
C8 | BaTiO3 | 5.70 | 185.63 | 73.87 | 0.256 | [44] |
Test. | Material | Density | E | G | ν | Notes |
---|---|---|---|---|---|---|
No | Mg/m3 | GPa | GPa | |||
47 | Pyrophyllite | 2.68 | 26.84 | 15.83 | −0.152 | |
48 | Pyrophyllite | 2.68 | 20.61 | 13.21 | −0.220 | fired |
49 | Salammoniac | 1.54 | 25.50 | 12.60 | 0.012 | |
50 | Agate | 2.57 | 83.94 | 36.53 | 0.149 | |
51 | Malachite | 3.80 | 46.35 | 19.07 | 0.216 | |
52 | Soapstone | 2.80 | 62.74 | 25.88 | 0.212 | |
53 | Travertine | 2.42 | 61.21 | 24.01 | 0.274 | |
54 | Tektite | 2.39 | 78.61 | 32.72 | 0.201 | |
55 | Granite (Santa Cecilia) | 2.74 | 64.70 | 24.33 | 0.330 | |
56 | Marble (Carrara) | 2.83 | 79.55 | 32.33 | 0.230 | |
C50 | Rock salt | 2.18 | 38.85 | 15.77 | 0.231 | [44] |
C38 | Fluorite <111> | 3.13 | 117.32 | 49.58 | 0.183 | [44] |
C39 | Calcite [001][110] | 2.72 | 57.07 | 20.12 | 0.418 | [44] yellow |
C47 | Calcite [001][110] | 2.71 | 56.36 | 19.90 | 0.416 | [44] clear |
C40 | ADP H6NO4P <100> | 1.80 | 24.87 | 8.71 | 0.427 | [44] pol//<001> |
C40a | ADP H6NO4P <100> | 1.80 | 60.91 | 25.18 | 0.210 | [44] pol//<010> |
C48 | Quartz SiO2 SX | 2.56 | 69.06 | 27.54 | 0.254 | [44] pol//Z |
C49 | Si SX | 2.33 | 155.09 | 60.60 | 0.280 | [44] |
Test | Material | Density | E | G | ν | v | vt | Thickness | Notes |
---|---|---|---|---|---|---|---|---|---|
No | Mg/m3 | GPa | GPa | mm/µs | mm/µs | mm | |||
57 | Fe3C7 | 8.61 | 156.90 | 59.07 | 0.33 | 5.18 | 2.62 | 0.83 | Synthesized # |
58 | Cr3C7 | 7.22 | 218.26 | 93.57 | 0.17 | 5.69 | 3.60 | 2.64 | Synthesized # |
59 | Actinolite | 3.73 | 131.64 | 59.08 | 0.11 | 6.03 | 3.98 | 2.71 | Cat’s eye |
60 | Jadeite 1 | 3.30 | 183.71 | 73.21 | 0.25 | 8.21 | 4.71 | 2.86 | Burma |
61 | Jadeite 2 | 3.30 | 187.33 | 73.83 | 0.27 | 8.41 | 4.73 | 2.69 | Burma |
62 | Nephrite 1 | 2.96 | 113.51 | 45.48 | 0.25 | 6.77 | 3.92 | 2.34 | |
63 | Nephrite 2 | 2.96 | 120.59 | 49.76 | 0.21 | 6.78 | 4.10 | 3.99 | AK, USA |
64 | Nephrite 3 | 2.96 | 120.40 | 50.00 | 0.20 | 6.74 | 4.11 | 2.26 | New Zealand |
65 | Santa Monica slate | 2.63 | 74.85 | 30.05 | 0.25 | 5.82 | 3.38 | 13.3 | CA, USA |
66 | Mono Lake obsidian | 2.52 | 79.42 | 37.74 | 0.05 | 5.63 | 3.87 | 6.40 | CA, USA |
67 | Hematite, SX | 5.25 | 225.56 | 86.54 | 0.30 | 7.64 | 4.06 | 8.10 | <100> * |
References
- Krautkramer, J.; Krautkramer, H. Ultrasonic Testing of Materials, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1990; p. 677. [Google Scholar]
- Kishoni, D.; Workman, G.L.; Moore, P.O. Ultrasonic Testing. In Nondestructive Testing Handbook, 3rd ed.; American Society for Nondestructive Testing: Columbus, OH, USA, 2007; Volume 7, p. 600. ISBN 978-1-57117-105-4. [Google Scholar]
- Whitehurst, E.A. The Soniscope—A Device for Field Testing of Concrete. In Proceedings of the 37th Purdue Road School, Purdue University, West Lafayette, IN, USA, 1951; pp. 105–115. Available online: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=3009&context=roadschool (accessed on 22 September 2022).
- Firestone, F.A. Flaw Detecting Device and Measuring Instrument. U.S. Patent 2,280,226A, 21 April 1942. [Google Scholar]
- Kim, G.; Loreto, G.; Kim, J.-Y.; Kurtis, K.E.; Wall, J.J.; Jacobs, L.J. In situ nonlinear ultrasonic technique for monitoring mi-crocracking in concrete subjected to creep and cyclic loading. Ultrasonics 2018, 88, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-S.; Chuang, T.-H.; Wei, W. Characterization of alumina ceramics by ultrasonic testing. Mater. Charact. 2000, 45, 221–226. [Google Scholar] [CrossRef]
- Choren, J.A.; Heinrich, S.M.; Silver-Thorn, M.B. Young’s modulus and volume porosity relationships for additive manufacturing applications. J. Mater. Sci. 2013, 48, 5103–5112. [Google Scholar] [CrossRef]
- Ohtsu, M. Acoustic Emission (AE) and Related Non-Destructive evaluation (NDE) Techniques in the Fracture Mechanics of Concrete: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2015; p. 291. [Google Scholar]
- Godin, N.; Reynaud, P.; R′Mili, M.; Fantozzi, G. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction. Appl. Sci. 2016, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.P. Physical Acoustics and the Properties of Solids. J. Acoust. Soc. Am. 1958, 28, 402. [Google Scholar]
- Bhatia, A.B. Ultrasonic Absorption, An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids; Clarendon Press: Oxford, UK, 1967; p. 427. [Google Scholar]
- Nowick, A.S.; Berry, B.S. Anelastic Relaxation in Crystalline Solids; Academic Press: New York, NY, USA, 1972; p. 694. [Google Scholar]
- Knopoff, L. Attenuation of Elastic Waves in the Earth. In Physical Acoustics, Principles and Applications; Mason, W.P., Ed.; Academic Press: New York, NY, USA, 1965; pp. 287–324. [Google Scholar]
- Ono, K. Review on Structural Health Evaluation with Acoustic Emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef] [Green Version]
- Schön, S.J. Elastic properties, Chapter 6. In Handbook of Petroleum Exploration and Production; Elsevier: Amsterdam, The Netherlands, 2011; Volume 8, pp. 149–243. [Google Scholar]
- Bagdassarov, N. Acoustic Properties of Rocks, Chapter 7. In Fundamentals of Rock Physics; Cambridge University Press: Cambridge, UK, 2021; pp. 245–291. [Google Scholar] [CrossRef]
- Migliori, A.; Sarrao, J.L. Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation; John Wiley: New York, NY, USA, 1997; p. 201. [Google Scholar]
- Schwarz, R.; Vuorinen, J. Resonant ultrasound spectroscopy: Applications, current status and limitations. J. Alloys Compd. 2000, 310, 243–250. [Google Scholar] [CrossRef]
- Balakirev, F.F.; Ennaceur, S.M.; Migliori, R.J.; Maiorov, B.; Migliori, A. Resonant ultrasound spectroscopy: The essential toolbox. Rev. Sci. Instrum. 2019, 90, 121401. [Google Scholar] [CrossRef] [Green Version]
- Soga, N.; Anderson, O.L. Elastic properties of tektites measured by resonant sphere technique. J. Geophys. Res. Earth Surf. 1967, 72, 1733–1739. [Google Scholar] [CrossRef]
- Tittman, B.R.; Abdul-Gawad, M.; Housley, R.M. Elastic velocity and Q factor measurements on Apollo 12, 14, and 15 rocks. In Physical Properties, Proceedings of the 3rd Lunar Science Conference, Houston, TX, USA, 10–13 January 1972; Lunar Science Inst. and National Aeronautics and Space Admin. (NASA) Manned Spacecraft Center: Houston, TX, USA, 1972; pp. 2565–2575. [Google Scholar]
- Demarest, H.H. Cube-Resonance Method to Determine the Elastic Constants of Solids. J. Acoust. Soc. Am. 1971, 49, 768–775. [Google Scholar] [CrossRef]
- Ohno, I. Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of or-thorhombic crystals. J. Phys. Earth 1976, 24, 355–379. [Google Scholar] [CrossRef]
- Ohno, I.; Yamamoto, S.; Anderson, O.L.; Noda, J. Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. J. Phys. Chem. Solids 1986, 47, 1103–1108. [Google Scholar] [CrossRef]
- Nieves, F.J.; Gascón, F.; Bayón, A.; Salazar, F. Straightforward estimation of the elastic constants of an isotropic cube excited by a single percussion. J. Acoust. Soc. Am. 2009, 126, EL140–EL146. [Google Scholar] [CrossRef]
- Angel, R.J.; Jackson, J.M.; Reichmann, H.J.; Speziale, S. Elasticity measurements on minerals: A review. Eur. J. Miner. 2009, 21, 525–550. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Lakes, R.S.; Lal, A. Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Rev. Sci. Instrum. 2000, 71, 2855–2861. [Google Scholar] [CrossRef] [Green Version]
- Jarzynski, J.; Balizer, E.; Fedderly, J.J.; Lee, G. Acoustic Properties—Encyclopedia of Polymer Science and Technology; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Sinha, M.; Buckly, D.J. Acoustic Properties of Polymers, Physical Properties of Polymers Handbook; Part X; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1021–1031. [Google Scholar]
- ASTM C1332-18; Standard Practice for Measurement of Ultrasonic Attenuation Coefficients of Advanced Ceramics by Pulse-Echo Contact Technique. ASTM International: West Conshohocken, PA, USA, 2018; 12p.
- Papadakis, E.P. Ultrasonic Attenuation in Thin Specimens Driven through Buffer Rods. J. Acoust. Soc. Am. 1968, 44, 724–734. [Google Scholar] [CrossRef]
- Horstman, R.; Peters, K.; Gebremedhin, S.; Meltzer, R.; Vieth, M.B.; Papadakis, E. Absolute Measurements of Ultrasonic Attenuation Using Damped Nondestructive Testing Transducers. J. Test. Eval. 1984, 12, 273. [Google Scholar] [CrossRef]
- Evans, A.G.; Tittmann, B.R.; Ahlberg, L.; Khuri-Yakub, B.T.; Kino, G.S. Ultrasonic attenuation in ceramics. J. Appl. Phys. 1978, 49, 2669–2679. [Google Scholar] [CrossRef]
- Generazio, E.R. The role of the reflection coefficient in precision measurement of ultrasonic attenuation. Mater. Eval. 1985, 43, 995–1004. [Google Scholar]
- Baaklini, G.Y.; Generazio, E.R.; Kiser, J.D. High-Frequency Ultrasonic Characterization of Sintered Silicon Carbide. J. Am. Ceram. Soc. 1989, 72, 383–387. [Google Scholar] [CrossRef]
- Roth, D.J.; Kiser, J.D.; Swickard, S.M.; Szatmary, S.A.; Kerwin, D.P. Quantitative mapping of pore fraction variations in silicon nitride using an ultrasonic contact scan technique. Res. Nondestruct. Eval. 1995, 6, 125–168. [Google Scholar] [CrossRef]
- Truell, R.; Elbaum, C.; Chick, B.B.; Garland, C. Ultrasonic Methods in Solid State Physics; Academic Press: New York, NY, USA, 1969; p. 478. [Google Scholar]
- Kuscer, D.; Bustillo, J.; Bakaric, T.; Drnovsek, S.; Lethiecq, M.; Levassort, F. Acoustic Properties of Porous Lead Zirconate Titanate Backing for Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Jen, C.-K.; Chung, C.-J.; Shapiro, G.; Monchalin, J.-P.; Langlois, P.; Bussiere, J.F. Acoustic Characterization of Poling Effects in PZT Ceramics. J. Am. Ceram. Soc. 1987, 70, C-256–C-259. [Google Scholar] [CrossRef]
- Na, J.K.; Breazeale, M.A. Ultrasonic nonlinear properties of lead zirconate-titanate ceramics. J. Acoust. Soc. Am. 1994, 95, 3213–3221. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, B.; Shrout, T.; Cao, W. Electromechanical properties of fine-grain, 0.7 Pb(Mg1/3 Nb2/3/)O3-0.3PbTiO3 ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004, 51, 908–912. [Google Scholar] [CrossRef]
- Treiber, M.; Kim, J.-Y.; Jacobs, L.J.; Qu, J. Correction for partial reflection in ultrasonic attenuation measurements using contact transducers. J. Acoust. Soc. Am. 2009, 125, 2946–2953. [Google Scholar] [CrossRef]
- Ono, K. A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef] [Green Version]
- Ono, K. Dynamic Viscosity and Transverse Ultrasonic Attenuation of Engineering Materials. Appl. Sci. 2020, 10, 5265. [Google Scholar] [CrossRef]
- ASTM E664-15(2020); Standard Practice for Measurement of the Apparent Attenuation of Longitudinal Ultrasonic Waves by Immersion Method. ASTM International: West Conshohocken, PA, USA, 2020; p. 4.
- Seki, H.; Granato, A.; Truell, R. Diffraction Effects in the Ultrasonic Field of a Piston Source and Their Importance in the Accurate Measurement of Attenuation. J. Acoust. Soc. Am. 1956, 28, 230–238. [Google Scholar] [CrossRef]
- Rogers, P.H.; Van Buren, A.L. An exact expression for the Lommel-diffraction correction integral. J. Acoust. Soc. Am. 1974, 55, 724–728. [Google Scholar] [CrossRef]
- Beller, L.S.; Johnson, L.C.; Taylor, S.C. An Ultrasonic Pulser/Receiver System with Extended Dynamic Range and Low Distortion. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1989; pp. 1099–1104. [Google Scholar]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1982; pp. 124–140. [Google Scholar]
- Mason, W.P.; McSkimin, H.J. Attenuation and Scattering of High Frequency Sound Waves in Metals and Glasses. J. Acoust. Soc. Am. 1947, 19, 464–473. [Google Scholar] [CrossRef]
- Norouzian, M.; Turner, J.A. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Attenuation. J. Acoust. Soc. Am. 2019, 145, 2181–2191. [Google Scholar] [CrossRef]
- Weaver, R. Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 1990, 38, 55–86. [Google Scholar] [CrossRef]
- Kinra, V.; Petraitis, M.; Datta, S.K. Ultrasonic wave propagation in a random p articulate composite. Int. J. Solids Struct. 1990, 16, 301–312. [Google Scholar] [CrossRef]
- Biwa, S. Independent scattering and wave attenuation in viscoelastic composites. Mech. Mater. 2001, 33, 635–647. [Google Scholar] [CrossRef]
- Doi, H.; Fujiwara, Y.; Miyake, K.; Oosawa, Y. A systematic investigation of elastic moduli of WC-Co alloys. Trans. Met. Soc. AIME 1969, 245, 1417–1425. [Google Scholar] [CrossRef]
- McClellan, K.J.; Chu, F.; Roper, J.M.; Shindo, I. Room temperature single crystal elastic constants of boron carbide. J. Mater. Sci. 2001, 36, 3403–3407. [Google Scholar] [CrossRef]
- Ingel, R.P.; Iii, D.L. Elastic Anisotropy in Zirconia Single Crystals. J. Am. Ceram. Soc. 1988, 71, 265–271. [Google Scholar] [CrossRef]
- Lee, M.; Gilmore, R.S. Single crystal elastic constants of tungsten monocarbide. J. Mater. Sci. 1982, 17, 2657–2660. [Google Scholar] [CrossRef]
- Yeheskel, O.; Gefen, Y. The effect of the a phase on the elastic properties of Si3N4. Mater. Sci. Eng. 1985, 71, 95–99. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 2016, 28, 275201. [Google Scholar] [CrossRef] [PubMed]
- Kamitani, K.; Grimsditch, M.; Nipko, J.C.; Loong, C.-K.; Okada, M.; Kimura, I. The elastic constants of silicon carbide: A Brillouin-scattering study of 4H and 6H SiC single crystals. J. Appl. Phys. 1997, 82, 3152–3154. [Google Scholar] [CrossRef]
- Vodenitcharova, T.; Zhang, L.; Zarudi, I.; Yin, Y.; Domyo, H.; Ho, T.; Sato, M. The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks. J. Mater. Process. Technol. 2007, 194, 52–62. [Google Scholar] [CrossRef]
- Munro, R.G. Elastic Moduli Data for Polycrystalline Oxide Ceramics; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002; p. 237. [Google Scholar]
- Woetting, G.; Caspers, B.; Gugel, E.; Westerheide, R. High-temperature properties of SiC-Si3N4 particle composites. Trans. ASME 2000, 122, 8–12. [Google Scholar] [CrossRef]
- Täffner, U.; Carle, V.; Schäfer, U.; Hoffmann, M.J. Preparation and microstructural analysis of high-performance ceramics. In ASM Handbook: Metallography and Microstructures; ASM International: Materials Park, OH, USA, 2004; pp. 1057–1066. [Google Scholar]
- Bobrowski, P.; Faryna, M.; Pędzich, Z. Microstructural Characterization of Yttria-Stabilized Zirconia Sintered at Different Temperatures Using 3D EBSD, 2D EBSD and Stereological Calculations. J. Mater. Eng. Perform. 2017, 26, 4681–4688. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Chen, S.; Zhao, Y.; Fu, Y.; Wang, Y. Effect of Ti and its compounds on the mechanical properties and microstructure of B4C ceramics fabricated via pressureless sintering. Ceram. Int. 2021, 47, 13756–13761. [Google Scholar] [CrossRef]
- Hoffmann, M.J. Analysis of Microstructural Development and Mechanical Properties of Si3N4 Ceramics. In Tailoring of Mechanical Properties of Si3N4 Ceramics; Springer: Dordrecht, Germany, 1994; pp. 59–72. [Google Scholar] [CrossRef]
- Weimer, A.; Bordia, R. Processing and properties of nanophase SiC/Si3N4 composites. Compos. Part B Eng. 1999, 30, 647–655. [Google Scholar] [CrossRef]
- Yasar, Z.A.; Haber, R.; Rafaniello, W. SPS Sintered Silicon Carbide-Boron Carbide Composites. In Advances in Ceramic Armor, Bioceramics, and Porous Materials; John Wiley & Sons: New York, NY, USA, 2017; pp. 13–20. [Google Scholar] [CrossRef]
- Hot Pressed Boron Carbide, B4C, MatWeb Material Property Data. Available online: https://www.matweb.com/search/datasheet.aspx?matguid=eebe9d1c760e47a1819c754d35d306bc&ckck=1 (accessed on 5 August 2022).
- Ogata, S.; Hirosaki, N.; Kocer, C.; Shibutani, Y. A comparative ab initio study of the ‘ideal’ strength of single crystal α- and β-Si3N4. Acta Mater. 2004, 52, 233–238. [Google Scholar] [CrossRef]
- Schaefer, M.C.; Haber, R.A. Amorphization Mitigation in Boron-Rich Boron Carbides Quantified by Raman Spectroscopy. Ceramics 2020, 3, 297–305. [Google Scholar] [CrossRef]
- Panneerselvam, M.; Rao, K.J. Preparation of Si3N4-SiC composites by microwave route. Bull. Mater. Sci. 2002, 25, 593–598. [Google Scholar] [CrossRef]
- Patnaik, P. Magnesium Silicates, Handbook of Inorganic Chemicals; McGraw-Hills: New York, NY, USA, 2003; pp. 534–535. [Google Scholar]
- Perfler, L.; Peyker, L.; Hörtnagl, M.; Weinberger, N.; Pichler, C.; Traxl, R.; Lackner, R. Pore space of steatite ceramics triggered by the allowance of natural fibers: High-resolution X-ray microscopy analysis and related thermo-mechanical properties. Mater. Des. 2022, 218, 110704. [Google Scholar] [CrossRef]
- Friis, E.A.; Lakes, R.A.; Park, J.B. Negative Poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 1988, 23, 4406–4414. [Google Scholar] [CrossRef]
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021; p. 3.
- Hollis, N.; Walker, D.; Lane, S.; Stutzman, P.E. Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual; FHWA-HRT-04-150; Federal Highway Administration: McLean, VA, USA, 2006; p. 351. [Google Scholar]
- Malhotra, V.M.; Carino, N.J. Handbook on Nondestructive Testing of Concrete; CRC Press: Boca Raton, FL, USA, 2003; p. 360. [Google Scholar]
- Toksöz, M.N.; Johnston, D.H.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 1979, 41, 681–690. [Google Scholar] [CrossRef]
- Johnston, D.H.; Toksöz, M.N.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 1979, 44, 691–711. [Google Scholar] [CrossRef]
- Ying, C.F.; Truell, R. Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid. J. Appl. Phys. 1956, 27, 1086–1097. [Google Scholar] [CrossRef]
- Martin, B. Ultrasonic attenuation due to voids in fibre-reinforced plastics. NDT Int. 1976, 9, 242–246. [Google Scholar] [CrossRef]
- Ridengaoqier, E.; Hatanaka, S. Prediction of porosity of pervious concrete based on its dynamic elastic modulus. Results Mater. 2021, 10, 100192. [Google Scholar] [CrossRef]
- Crouch, L.K.; Pitt, J.; Hewitt, R. Aggregate Effects on Pervious Portland Cement Concrete Static Modulus of Elasticity. J. Mater. Civ. Eng. 2007, 19, 561–568. [Google Scholar] [CrossRef]
- Klink, S.A. Elastic-modulus variations in concrete. Exp. Mech. 1978, 18, 147–151. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of Deformation and Acoustic Propagation in Porous Media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Carcione, J.M. Wave Fields in Real Media, Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2015; p. 420. [Google Scholar]
- Mavko, G.M.; Nut, A. Wave attenuation in partially saturated rocks. Geophysics 1979, 44, 161–178. [Google Scholar] [CrossRef]
- Bungey, J. The validity of ultrasonic pulse velocity testing of in-place concrete for strength. NDT Int. 1980, 13, 296–300. [Google Scholar] [CrossRef]
- Candelaria, M.; Kee, S.-H.; Yee, J.-J.; Lee, J.-W. Effects of Saturation Levels on the Ultrasonic Pulse Velocities and Mechanical Properties of Concrete. Materials 2021, 14, 152. [Google Scholar] [CrossRef]
- Cui, J.; Ormerod, J.; Parker, D.S.; Ott, R.; Palasyuk, A.; McCall, S.; Paranthaman, M.P.; Kesler, M.S.; McGuire, M.A.; Nlebedim, C.; et al. Manufacturing Processes for Permanent Magnets: Part II—Bonding and Emerging Methods. JOM 2022, 74, 2492–2506. [Google Scholar] [CrossRef]
- Wanniarachchi, W.A.M.; Ranjith, P.G.; Perera, M.S.A.; Rathnaweera, T.D.; Lyu, Q.; Mahanta, B. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: An experimental study. R. Soc. Open Sci. 2017, 4, 170896. [Google Scholar] [CrossRef] [Green Version]
- Attewell, P.B.; Ramana, Y.V. Wave attenuation and internal friction as functions of frequency in rocks. Geophysics 1966, 31, 1049–1056. [Google Scholar] [CrossRef]
- Wulff, A.-M.; Hashida, T.; Watanabe, K.; Takahashi, H. Attenuation behaviour of tuffaceous sandstone and granite during microfracturing. Geophys. J. Int. 1999, 139, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Agersborg, R.; Johansen, T.A.; Jakobsen, M. Velocity variations in carbonate rocks due to dual porosity and wave-induced fluid flow. Geophys. Prospect. 2008, 57, 81–98. [Google Scholar] [CrossRef]
- Hao, M.; Pierotti, C.E.; Tkachev, S.; Prakapenka, V.; Zhang, J.S. The single-crystal elastic properties of the jadeite-diopside solid solution and their implications for the composition-dependent seismic properties of eclogite. Am. Miner. 2019, 104, 1016–1021. [Google Scholar] [CrossRef]
Material | Z | Vobserved | |Rtheory| | Robserved |
---|---|---|---|---|
BK7 glass Buffer | 14.6 | 0.87 | ||
Water | 1.50 | 0.75 | 0.813 | 0.862 |
PMMA | 3.20 | 0.65 | 0.640 | 0.747 |
PVC | 3.26 | 0.69 | 0.634 | 0.793 |
Mortar 31.3% void | 3.56 | 0.60 | 0.607 | 0.690 |
Mortar 26.2% void | 4.08 | 0.60 | 0.562 | 0.690 |
Mortar 22.8% void | 5.10 | 0.59 | 0.481 | 0.678 |
Mortar 10.7% void | 7.42 | 0.40 | 0.325 | 0.460 |
Pyrex glass | 12.3 | 0.32 | 0.084 | 0.362 |
Fused silica | 12.9 | 0.19 | 0.060 | 0.218 |
Soda-lime glass | 14.2 | 0.19 | 0.013 | 0.218 |
Borosilicate glass | 14.2 | 0.24 | 0.013 | 0.276 |
Granite | 14.3 | 0.26 | 0.009 | 0.299 |
BK7 glass | 14.6 | 0.24 | 0.000 | 0.276 |
Marble | 17.7 | 0.32 | 0.097 | 0.368 |
Al 2024 | 17.8 | 0.27 | 0.100 | 0.310 |
Ti-6-4 | 26.8 | 0.39 | 0.296 | 0.448 |
Ti-Beta-III | 27.4 | 0.40 | 0.306 | 0.460 |
Alumina | 32.1 | 0.45 | 0.376 | 0.517 |
Brass 360 | 36.4 | 0.58 | 0.429 | 0.667 |
Sapphire | 43.6 | 0.60 | 0.499 | 0.690 |
High-C Steel | 46.2 | 0.68 | 0.521 | 0.782 |
Through Transmission | Buffer Rod | RUS | |
---|---|---|---|
Test Set-up | |||
Sample Coupling | gel under compression | gel under compression | dry contact |
Transducer Input | pulse | pulse | frequency sweep |
Transducer Count | 2 | 1 | 2 |
Diffraction Correction | always used | not used at high frequency | not used |
Best method for | ultrasonic attenuation including transverse mode | high frequency attenuation, longitudinal mode only | elastic constants of anisotropic solids |
Can be used for | elastic constants | ultrasonic attenuation | |
Problem Areas | sample parallelism | sample/buffer parallelism, reflection coefficients, refraction at interface | sample preparation, transverse vibration |
References | [43,44] | [30,31,32,33] | [17,18,19] |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m /MHz | dB/m /MHz4 | mm/µs | dB/m /MHz | dB/m /MHz4 | mm/µs | mm | Mg/m3 | ||||||
1 | B4C | 46.5 | 14.18 | 2.42 × 10−2 | 51.8 | 8.76 | 1.66 × 10−2 | 1.11 | 0.69 | 8.97 | 2.52 | Hot pressed | ||
2 | Y-stabilized ZrO2 | 147 | 3.01 | 7.08 | 3.89 × 10−2 | 259 | 1.43 | 3.71 | 3.52 × 10−2 | 1.76 | 0.91 | 2.72 | 5.68 | Y-stabilized |
3 | WC | 23.6 | 8.93 × 10−3 | 6.78 | 5.86 × 10−3 | 35.8 | 8.02 × 10−3 | 4.07 | 5.34 × 10−3 | 1.52 | 0.91 | 31.0 | 14.51 | 16.2% Co |
4 | Si3N4 | 84.2 | 5.41 × 10−3 | 11.08 | 3.42 × 10−2 | 2.48 | 3.56 | 6.74 | 1.49 × 10−3 | 0.029 | 0.043 | 6.46 | 3.18 | Hot pressed |
5 | Si3N4 + 10% SiC | 80.6 | 6.18 × 10−3 | 11.00 | 3.25 × 10−2 | 9.38 | 2.34 | 6.72 | 2.91 × 10−3 | 0.058 | 0.036 | 6.39 | 3.08 | Hot pressed |
6 | Si3N4 + 20% SiC | 40.8 | 3.29 × 10−2 | 10.22 | 1.53 × 10−2 | 18.5 | 2.77 × 10−2 | 6.63 | 4.49 × 10−3 | 0.45 | 0.29 | 6.50 | 2.97 | Hot pressed |
7 | Sintered Al2O3 | 58.6 | 2.16 × 10−2 | 9.26 | 8.32 × 10−2 | 12.1 | 5.38 | 5.93 × 10−2 | 0.76 | 0.41 | 3.24 | 3.42 | ||
8 | Transparent Al2O3 | 301 | 11.09 | 1.12 × 10−1 | 159 | 6.47 | 3.77 × 10−2 | 0.53 | 0.34 | 3.20 | 3.90 | Lucalox | ||
C46 | Sapphire | 106 | 10.93 | 4.33 × 10−2 | 32.9 | 6.78 | 8.17 × 10−3 | 0.31 | 0.19 | 3.10 | 3.98 | A-cut * | ||
Average | 4.33 × 10−2 | 1.90 × 10−2 | 0.73 | 0.42 |
Number | Material | E * | G * | ν | C11 | C33 | C44 | C12 | C13 | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPa | GPa | GPa | GPa | GPa | GPa | GPa | mm | Mg/m3 | ||||
1 | B4C | 460.8 | 193.4 | 0.191 | 8.97 | 2.52 | This study | |||||
1a | B4C | 460.0 | 195.6 | 0.176 | 542.8 | 534.5 | 164.8 | 130.6 | 63.5 | 2.50 | [56] | |
2 | Zirconia | 205.0 | 78.18 | 0.311 | 2.72 | 5.68 | This study | |||||
2 | Zr2O3-2.8% Y2O3 | 221.0 | 56 | 0.330 | 425 | 56 | 125 | 6.09 | [57] | |||
3 | WC-16.2% Co | 584.4 | 240.4 | 0.218 | 31.0 | 14.51 | This study | |||||
3a | WC-16.4% Co | 583 | 240 | 0.216 | 14.53 | [55] | ||||||
3b | WC | 707 | 720 | 240.4 | 328 | 254 | 267 | 15.40 | [58] | |||
4 | Si3N4 | 344.2 | 144.5 | 0.191 | 6.46 | 3.18 | This study | |||||
4a | α-Si3N4 | 362 | 144 | 0.25 | 3.19 | [59] | ||||||
4b | α-Si3N4 | 318.0 | 124.8 | 0.274 | 403 | 526 | 99 (112) # | 180 | 105 | 3.19 | [60] | |
5 | Si3N4 + 10% SiC | 335.9 | 141.6 | 0.186 | 6.39 | 3.08 | This study | |||||
6 | Si3N4 + 20% SiC | 307.5 | 130.6 | 0.178 | 6.50 | 2.97 | This study | |||||
6a | SiC (6H or 4H) * | 503.9 | 163 | 0.442 | 501 | 553 | 163 | 111 | 52 | 3.22 | [61] | |
7 | Sintered Alumina | 263.5 | 98.9 | 0.245 | 3.24 | 3.42 | This study | |||||
8 | Transparent alumina | 405.5 | 163.3 | 0.242 | 3.20 | 3.90 | This study | |||||
C46 | Sapphire | 434.4 | 183 | 0.190 | 3.1 | 3.98 | This study | |||||
C46a | Sapphire (C-cut) | 456.2 | 147.2 | 0.178 | 497.6 | 498.1 | 147.2 | 162.6 | 117.2 | 3.98 | [62] | |
C46b | Sapphire (A-cut) | 431.2 | 167.5 | 0.228 | 497.6 | 498.1 | 147.2 | 162.6 | 117.2 | 3.98 | [62] | |
C46c | Sapphire (R-cut) | 386.0 | 170 | 0.248 | 497.6 | 498.1 | 147.2 | 162.6 | 117.2 | 3.98 | [62] | |
9 | Bonded SiC | 58.3 | 25.3 | 0.154 | 8.87 | 2.32 | This study | |||||
10 | Bonded Emery | 10.6 | 4.38 | 0.206 | 7.24 | 2.63 | This study |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m /MHz | dB/m /MHz4 | mm/µs | dB/m /MHz | dB/m /MHz4 | mm/µs | mm | Mg/m3 | ||||||
9 | Bonded SiC | 392.0 | 5.79 | 8.32 × 10−2 | 338 | 2.82 | 3.30 | 4.09 × 10−2 | 0.86 | 0.49 | 8.87 | 2.32 | ||
10 | Bonded Emery | 0.0 | (1110: n = 3) | 2.12 | [8.62 × 10−2] # | 414 | 1.65 × 103 | 1.29 | 9.77 × 10−2 | 1.86 # | 1.13 | 7.24 | 2.63 | # C3. CRt used |
11 | Fired clay (red brick) | 0.0 | (2041: n = 2) | 2.32 | [1.30 × 10−1] | 3220 | 1.39 | 1.73 × 10−1 | 1.66 # | 1.33 | 9.3 | 1.93 | # Cdt/C2 | |
12 | Fired clay (red planter) | 500.0 | 8.67 × 10−1 | 2.85 | 5.22 × 10−2 | 733 | 4.00 × 10−1 | 1.94 | 5.20 × 10−2 | 1.47 | 1.00 | 3.1 | 2.18 | |
13 | Clay ceramic (planter) | 111.0 | 8.73 × 10−1 | 4.77 | 1.94 × 10−2 | 364 | 9.70 × 10−1 | 2.84 | 3.79 × 10−2 | 3.28 | 1.95 | 8.25 | 2.18 | Shigaraki |
14 | Clay ceramic (tile) | 52.0 | 4.39 × 10−2 | 5.40 | 1.03 × 10−2 | 83.3 | 5.07 × 10−1 | 3.45 | 1.06 × 10−2 | 1.60 | 1.03 | 6.2 | 2.34 | |
15 | Steatite | 69.4 | 2.34 × 10−2 | 6.78 | 1.72 × 10−2 | 260 | 4.04 | 3.85 × 10−2 | 3.75 | 2.24 | 4.6 | 2.78 | ||
16 | Porcelain | 15.0 | 6.00 × 10−2 | 6.72 | 3.69 × 10−3 | 52.5 | 1.55 × 10−1 | 4.23 | 8.14 × 10−3 | 4.16 | 2.20 | 2.0 | 2.63 | |
C15 | BK7 glass | 5.8 | 5.80 | 1.20 × 10−3 | 3.4 | 3.46 | 4.31 × 10−4 | 0.60 | 0.36 | 3.3/100 | 2.51 | [44] | ||
C21 | Clay ceramic (tile) | 193.0 | 5.07 × 10−1 | 4.60 | 2.78 × 10−2 | 239 | 7.84 × 10−1 | 2.47 | 2.16 × 10−2 | 1.24 | 0.78 | 6.9 | 1.97 | [44] |
C29 | Macor | 3.6 | 5.30 | 6.91 × 10−4 | 8.3 | 8.09 × 10−4 | 3.10 | 9.43 × 10−4 | 2.33 | 1.36 | 36.5 | 2.52 | [44] | |
C42 | Pyrex glass | 10.7 | 5.52 | 2.16 × 10−3 | 1.4 | 3.41 | 1.75 × 10−4 | 0.13 | 0.08 | 3.3/76 | 2.23 | [44] | ||
C43 | Soda-lime (S-L) glass | 8.7 | 5.86 | 1.87 × 10−3 | 16.2 | 3.50 | 2.08 × 10−3 | 1.86 | 1.11 | 5.6 | 2.48 | [44] | ||
C44 | S-L glass, tempered | 12.3 | 5.83 | 2.63 × 10−3 | 8.8 | 3.47 | 1.12 × 10−3 | 0.72 | 0.43 | 10.2 | 2.52 | [44] | ||
C45 | Fused silica | ND | 5.87 | ND | 3.71 | 3.0/45 | 2.20 | [44] | ||||||
Average | 3.13 × 10−2 | 3.46 × 10−2 | 1.83 | 1.11 |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m /MHz | dB/m /MHz4 | mm/µs | dB/m /MHz | dB/m /MHz4 | mm/µs | mm | Mg/m3 | ||||||
17 | Mortar 10.7% void | 223 | (66.1: n = 3) | 3.63 | 3.85 × 10−2 | 384 | 4.29 × 10 | 2.26 | 3.54 × 10−2 | 1.48 | 0.92 | 11.2 | 2.00 | Dry |
17a | Mortar 10.7% void | 234 | (45.5: n = 3) | 3.95 | 4.05 × 10−2 | 375 | 3.04 × 10−1 | 2.58 | 3.83 × 10−2 | 1.45 | 0.95 | 11.2 | 2.28 | Saturated |
18 | Mortar 22.8% void | 0 | (916: n = 3) | 3.14 | 1.05 × 10−1 | 662 | 1.04 × 10−2 | 1.86 | 5.22 × 10−2 | 0.84 | 0.50 | 7.7 | 1.73 | Dry |
18a | Mortar 22.8% void | 6.5 | (169: n = 3) | 3.28 | 2.11 × 10−2 | 855 | 1.05 × 10−2 | 2.16 | 7.60 × 10−2 | 5.47 | 3.60 | 7.7 | 1.99 | Saturated |
19 | Mortar 31.3% void | 0 | (4260: n = 3) | 2.43 | 3.79 × 10−1 | 547 | 5.16 × 10−2 | 1.60 | 6.23 × 10−2 | 0.25 | 0.16 | 6.4 | 1.54 | Dry |
19a | Mortar 31.3% void | 163 | (361: n = 3) | 2.71 | 5.20 × 10−2 | 921 | 1.84 × 102 | 1.92 | 7.77 × 10−2 | 2.11 | 1.49 | 6.4 | 1.80 | Saturated |
20 | Graphite plate | 0 | (868: n = 2) | 3.15 | 1.00 × 10−1 | 0 | (1071: n = 2) | 1.87 | 7.34 × 10−2 | 1.23 | 0.73 | 2.8 | 1.77 | L; pol//T |
21 | Graphite plate | 0 | (868: n = 2) | 3.15 | 1.00 × 10−1 | 0 | (1089: n = 2) | 1.82 | 7.26 × 10−2 | 1.25 | 0.72 | 2.8 | 1.77 | L; pol//S |
22 | Graphite plate | 0 | (1009: n = 2) | 2.11 | 7.80 × 10−2 | 1526 | (496: n = 2) | 1.79 | 1.33 × 10−1 | 2.00 | 1.70 | 3.2 | 1.77 | T; pol//L |
23 | Graphite plate | 0 | (1009: n = 2) | 2.11 | 7.80 × 10−2 | 992 | (580: n = 2) | 1.54 | 8.87 × 10−2 | 1.56 | 1.14 | 3.2 | 1.77 | T; pol//S |
24 | Graphite plate | 0 | (905: n = 2) | 2.20 | 2.78 × 10−2 | 1190 | (476: n = 2) | 2.04 | 1.25 × 10−1 | 1.84 | 1.71 | 2.1 | 1.77 | S; pol//L |
25 | Graphite plate | 0 | (905: n = 2) | 2.20 | 2.78 × 10−2 | 1000 | (648: n = 2) | 1.71 | 1.03 × 10−1 | 1.82 | 1.42 | 2.1 | 1.77 | S; pol//T |
26 | Poco graphite rod | 0 | (176: n = 2) | 3.35 | 2.22 × 10−2 | 0 | (328: n = 2) | 1.95 | 2.34 × 10−2 | 1.86 | 1.08 | 7.0 | 1.71 | axial |
27 | Poco graphite rod | 0 | (333: n = 2) | 2.13 | 2.60 × 10−2 | 0 | (395: n = 2) | 1.75 | 2.53 × 10−2 | 1.19 | 0.97 | 19.5 | 1.71 | radial //axial |
28 | Poco graphite rod | 0 | (333: n = 2) | 2.13 | 2.60 × 10−2 | 0 | (251: n = 2) | 1.32 | 1.21 × 10−2 | 0.75 | 0.47 | 19.5 | 1.71 | radial //circ. |
29 | Pyrolytic graphite | 421 | 1.40 | 2.21 | 3.41 × 10−2 | 230 | 2.36 | 1.40 | 1.18 × 10−2 | 0.63 | 0.35 | 5.22 | 1.72 | S. |
30 | Ferrite (hard magnet) | 30.1 | 2.15 × 10−2 | 6.44 | 7.10 × 10−3 | 52.0 | 3.59 | 6.84 × 10−3 | 1.73 | 0.96 | 4.6 | 4.99 | disc | |
31 | Ferrite (hard magnet) | 32.9 | 8.66 × 10−3 | 6.54 | 7.88 × 10−3 | 28.6 | 4.29 × 10−3 | 3.62 | 3.79 × 10−3 | 0.87 | 0.48 | 7.0 | 5.05 | ring |
32 | Fe Nd-B magnet | 223 | 6.31 | 5.16 × 10−2 | 185 | 2.88 | 1.95 × 10−2 | 0.83 | 0.38 | 12.8 | 7.50 | disc | ||
33 | MnS | 53.0 | 6.11 × 10−3 | 4.60 | 8.93 × 10−3 | 165 | 2.67 | 1.61 × 10−2 | 3.11 | 1.81 | 49.1 | 3.84 | hot pressed | |
34 | ZnSe | 16.3 | 8.26 × 10−3 | 4.44 | 2.65 × 10−3 | 96.8 | 6.02 × 10−2 | 2.37 | 8.41 × 10−3 | 5.94 | 3.17 | 5.3 | 5.24 | CVD |
35 | Gypsum | 371 | 2.51 | 3.41 × 10−2 | 732 | 1.75 | 4.69 × 10−2 | 1.97 | 1.38 | 5.9,6.9 | 1.39 | Average of 2 | ||
36 | Zeolite composite 1 | 2385 | 2.17 | 1.90 × 10−1 | 2823 | 1.46 | 1.51 × 10−1 | 1.18 | 0.80 | 3–5.7 | 1.11 | Average of 3 | ||
37 | Zeolite composite 2 | 3215 | 2.12 | 2.50 × 10−1 | 4020 | 1.46 | 2.15 × 10−1 | 1.25 | 0.86 | 1.6,5.7 | 1.07 | Average of 2 | ||
38 | Zeolite composite 3 | 3290 | 1.99 | 2.40 × 10−1 | 5940 | 1.48 | 3.22 × 10−1 | 1.81 | 1.34 | 2.4 | 0.90 | |||
39 | C-C composite | 535 | 14.4 | 2.82 × 10−1 | 1712 | 2.43 | 1.52 × 10−1 | 3.20 | 0.54 | 10.2/1.7 | 1.92 | S, pol//R | ||
40 | C-C composite | 535 | 14.4 | 2.82 × 10−1 | 1462 | 2.43 | 1.30 × 10−1 | 2.73 | 0.46 | 10.2/1.7 | 1.92 | S, pol//C | ||
41 | C-C composite | 1941 | 11.7 | 8.32 × 10−1 | 2783 | 2.19 | 2.21 × 10−1 | 1.43 | 0.27 | 1.5 | 1.92 | R, pol//S | ||
42 | C-C composite | 1941 | 11.7 | 8.32 × 10−1 | 1994 | 2.89 | 2.11 × 10−1 | 1.03 | 0.25 | 1.5 | 1.92 | R, pol//C | ||
43 | C-C composite | 635 | 13.1 | 3.05 × 10−1 | 846 | 2.54 | 7.87 × 10−2 | 1.33 | 0.26 | 2.0 | 1.92 | C, pol//S | ||
44 | C-C composite | 635 | 13.1 | 3.05 × 10−1 | 846 | 2.48 | 7.69 × 10−2 | 1.33 | 0.25 | 2.0 | 1.92 | C, pol//R | ||
45 | SiC-SiC composite | 973 | 6.62 × 10 | 9.42 | 3.57 x10−1 | 778 | 3.31 × 10 | 5.29 | 1.57 × 10−1 | 0.78 | 0.44 | 2.6 | 2.46 | S, pol//L |
46 | SiC-SiC composite | 973 | 6.62 × 10 | 9.42 | 3.57 × 10−1 | 1479 | 4.09 × 10 | 6.09 | 3.39 × 10−1 | 1.46 | 0.95 | 2.6 | 2.46 | S, pol//T |
C7 | PZT-5A | 242 | 4.38 | 3.88 × 10−2 | 509 | 1.72 | 3.21 × 10−2 | 2.10 | 0.83 | 5.3 | 7.78 | [44], pol#//L | ||
C8 | BaTiO3 | 105 | 6.29 | 2.42 x10−2 | 89.3 | 3.60 | 1.18 × 10−2 | 0.85 | 0.49 | 4.2 | 5.70 | [44] | ||
Average | 1.63 × 10−1 | 9.41 × 10−2 | 1.77 | 0.99 |
Test. | Material | Cd | CR | v | η | Cdt | CRt | vt | ηt | Cdt/Cd | ηt/η | Thickness | Density | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | dB/m /MHz | dB/m /MHz4 | mm/µs | dB/m /MHz | dB/m /MHz4 | mm/µs | mm | Mg/m3 | ||||||
47 | Pyrophyllite | 236 | 3.23 | 2.71 × 10−2 | 301 | 2.43 | 8.96 × 10−2 | 1.28 | 0.96 | 13.2 | 2.68 | |||
48 | Pyrophyllite | 152 | 2.89 | 1.61 × 10−2 | 253 | 2.22 | 8.96 × 10−2 | 1.66 | 1.28 | 13.2 | 2.68 | fired | ||
49 | Salammoniac | 87.4 | 2.16 | 4.07 | 1.33 × 10−2 | 216 | 2.40 | 2.86 | 2.28 × 10−2 | 2.45 | 1.72 | 8.4 | 1.54 | |
50 | Agate | 42.1 | 5.87 | 9.03 × 10−3 | 91.2 | 7.18 × 10−3 | 3.77 | 1.26 × 10−2 | 2.17 | 1.39 | 20.3 | 2.57 | ||
51 | Malachite | 98.2 | 3.72 | 1.34 × 10−2 | 109 | 2.24 | 8.96 × 10−2 | 1.11 | 0.67 | 5.7 | 3.80 | |||
52 | Soapstone | 180 | 8.65 × 10−2 | 5.03 | 4.92 × 10−2 | 305 | 3.04 | 3.40 × 10−2 | 1.14 | 0.69 | 10.4 | 2.80 | ||
53 | Travertine | 829 | 5.65 | 1.72 × 10−1 | 926 | 3.15 | 1.35 × 10−1 | 0.81 | 10.5 | 2.42 | ||||
54 | Tektite | 162 | 6.05 | 3.59 × 10−2 | 54.1 | 3.70 | 7.33 × 10−3 | 0.33 | 0.20 | 18.5 | 2.39 | |||
55 | Granite (Santa Cecilia) | 0 | (418: n = 2) | 5.91 | 9.05 × 10−2 | 1054 | 1.82 × 102 | 2.98 | 1.35 × 10−1 | 1.31 | 5.5 | 2.74 | ||
56 | Marble (Carrara) | 0 | (39.5: n = 2) | 5.71 | 8.26 × 10−3 | 48.7 | (68.4: n = 2) | 3.38 | 1.45 × 10−2 | 1.75 | 7.6 | 2.83 | ||
C50 | Rock salt | 50.0 | 1.82 × 10−2 | 4.55 | 8.34 × 10−3 | 216 | 2.69 | 2.12 × 10−2 | 4.32 | 2.55 | 51.0 | 2.18 | [44] | |
C38 | Fluorite <111> | 43.4 | 6.39 | 1.02 × 10−2 | 45.1 | 3.98 | 6.58 × 10−3 | 1.04 | 0.65 | 28.8 | 3.13 | [44] | ||
C39 | Calcite [001][110] | 58.8 | 7.25 | 1.56 × 10−2 | 40.9 | 2.72 | 4.08 × 10−3 | 0.70 | 0.26 | 22.1 | 2.72 | [44] yellow | ||
C47 | Calcite [001][110] | 52.4 | 1.17 × 10−2 | 7.14 | 1.37 × 10−2 | 28.3 | 2.71 | 2.81 × 10−3 | 0.54 | 0.20 | 8.5 | 2.71 | [44] clear | |
C40 | ADP H6NO4P <100> | 0.0 | 6.17 | 2.38 | 2.20 | 1.92 × 10−4 | 73.0 | 1.80 | [44] pol//<001> | |||||
C40a | ADP H6NO4P <100> | 0.0 | 6.17 | 3.74 | 3.74 | 5.13 × 10−4 | 73.0 | 1.80 | [44] pol//<010> | |||||
C48 | Quartz SiO2 SX | 19.1 | 5.71 | 4.00 × 10−3 | 47.2 | 3.28 | 5.67 × 10−3 | 2.47 | 1.42 | 23.4 | 2.56 | [44] pol//Z | ||
C49 | Si SX | 2.7 | 9.22 | 9.09 × 10−4 | 15.7 | 5.10 | 2.93 × 10−3 | 5.84 | 3.23 | 29.7 | 2.33 | [44] | ||
Average | 3.12 × 10−2 | 3.44 × 10−2 | 1.77 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, K. Ultrasonic Attenuation of Ceramic and Inorganic Materials Using the Through-Transmission Method. Appl. Sci. 2022, 12, 13026. https://doi.org/10.3390/app122413026
Ono K. Ultrasonic Attenuation of Ceramic and Inorganic Materials Using the Through-Transmission Method. Applied Sciences. 2022; 12(24):13026. https://doi.org/10.3390/app122413026
Chicago/Turabian StyleOno, Kanji. 2022. "Ultrasonic Attenuation of Ceramic and Inorganic Materials Using the Through-Transmission Method" Applied Sciences 12, no. 24: 13026. https://doi.org/10.3390/app122413026
APA StyleOno, K. (2022). Ultrasonic Attenuation of Ceramic and Inorganic Materials Using the Through-Transmission Method. Applied Sciences, 12(24), 13026. https://doi.org/10.3390/app122413026