Human Vital Signs Detection: A Concurrent Detection Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Vital Signs
2.2. Mathematical Formulation of the System
2.3. Signal Processing Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, W.; He, W.; Lin, X.; Miao, J. Non-Contact Monitoring of Human Vital Signs Using FMCW Millimeter Wave Radar in the 120 GHz Band. Sensors 2021, 21, 2732. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, X.; Ding, Y.; Zhang, L. Indoor Activity and Vital Sign Monitoring for Moving People with Multiple Radar Data Fusion. Remote Sens. 2021, 13, 3791. [Google Scholar] [CrossRef]
- Sacco, G.; Piuzzi, E.; Pitella, E.; Pisa, S. An FMCW Radar for Localization and Vital Signs Measurement for Different Chest Orientations. Sensors 2020, 20, 3489. [Google Scholar] [CrossRef] [PubMed]
- Texas Instruments. Available online: http://www.ti.com/lit/ds/symlink/iwr1443.pdf (accessed on 12 October 2021).
- Ahmad, A.; Roh, J.C.; Wang, D.; Dubey, A. Vital Signs Monitoring of Multiple People using a FMCW Millimeter-Wave Sensor. In Proceedings of the 2018 IEEE Radar Conference, Oklahoma City, OK, USA, 23–27 April 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Alizadeh, M.; Shaker, G.; Almeida, J.C.M.D.; Morita, P.P.; Naeini, S.S. Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar. IEEE Access 2019, 7, 54958–54968. [Google Scholar] [CrossRef]
- Yuan, Y.; Lu, C.; Chen, A.Y.K.; Tseng, C.H.; Wu, C.T.M. Noncontact Multi-Target Vital Sign Detection using Self-Injection-Locked Radar Sensor based on Metamaterial Leaky Wave Antenna. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium, Boston, MA, USA, 2–7 June 2019. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S. Remote Detection of Human Vital Sign with Stepped-Frequency Continuous Wave Radar. IEEE JSTARS 2014, 7, 775–782. [Google Scholar] [CrossRef]
- Medscape. Available online: https://emedicine.medscape.com/article/2172054-overview#a3 (accessed on 12 October 2021).
- UpBeat. Available online: https://upbeat.org/early-warning-signs/slow-heartbeat (accessed on 12 October 2021).
- Droitcour, A.D. Non-Contact Measurement of Heart and Respiration Rates with Single-Chip Microwave Doppler Radar. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Brooker, G.M. Understanding Millimetre Wave FMCW Radars. In Proceedings of the 1st International Conference on Sensing Technology, Palmerston North, New Zealand, 21–23 November 2005. [Google Scholar]
- Su, L.; Wu, H.S.; Tzuang, C.K.C. 2-D FFT and time-frequency analysis techniques for multi-target recognition of FMCW radar signal. In Proceedings of the Asia-Pacific Microwave Conference 2011, Melbourne, Australia, 5–8 December 2011. [Google Scholar]
- Introduction to Mmwave Sensing: FMCW Radars. Available online: https://training.ti.com/sites/default/files/docs/mmwaveSensing-FMCW-offlineviewing_0.pdf (accessed on 12 October 2021).
- Lv, Q.; Chen, L.; An, K.; Wang, J.; Li, H.; Ye, D.; Huangfu, J.; Li, C.; Ran, L. Doppler Vital Signs Detection in the Presence of Large-Scale Random Body Movements. IEEE TMTT 2018, 66, 4261–4270. [Google Scholar] [CrossRef]
- Tu, J.; Hwang, T.; Lin, J. Respiration Rate Measurement Under 1-D Body Motion Using Single Continuous-Wave Doppler Radar Vital Sign Detection System. IEEE TMTT 2016, 64, 1937–1946. [Google Scholar] [CrossRef]
- Chang, W.F.; Chen, K.W.; Yang, C.L. Noise Tolerable Vital Sign Detection Using Phase Accumulated Demodulation for FMCW Radar System. In Proceedings of the 2018 IEEE International Microwave Biomedical Conference, Philadelphia, PA, USA, 14–15 June 2018. [Google Scholar] [CrossRef]
- Guoqing, Q. High accuracy range estimation of FMCW level radar based on the phase of the zero-padded FFT. In Proceedings of the 7th International Conference on Signal Processing, Beijing, China, 31 August–4 September 2004. [Google Scholar] [CrossRef]
- Texas Instruments. Driver Vital Signs—Developer’s Guide; Texas Instruments: Dallas, TX, USA, 2017; pp. 1–30. [Google Scholar]
- Wang, S.; Pohl, A.; Jaeschke, T.; Czaplik, M.; Kony, M.; Leonhardt, S.; Pohl, N. A Novel Ultra-Wideband 80 GHz FMCW Radar System for Contactless Monitoring of Vital Signs. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Svensson, J. High Resolution Frequency Estimation in an FMCW Radar Application. Master’s Thesis, Linköping University, Linköping, Sweden, 2018. [Google Scholar]
- Cython. Available online: https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html (accessed on 12 October 2021).
- Python. Available online: https://docs.python.org/3/extending/building.html (accessed on 12 October 2021).
- Tutorialspoint. Available online: https://www.tutorialspoint.com/pyqt/index.htm (accessed on 12 October 2021).
- Computer Hope. Available online: https://www.computerhope.com/jargon/g/gui.htm (accessed on 12 October 2021).
- C95.1 Edition-1999—IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=757105 (accessed on 12 October 2021). [CrossRef]
- Johnson, R.C. Antenna Engineering Handbook, 3rd ed.; McGraw-Hill, Inc.: Atlanta, GA, USA, 1993; pp. 1.4–1.5. [Google Scholar]
- Texas Instruments IWR1443BOOST User Manual. Available online: https://www.manualslib.com/manual/1976384/Texas-Instruments-Iwr1443boost.html (accessed on 10 November 2021).
- Using a Complex-Baseband Architecture in FMCW Radar Systems. Available online: https://www.ti.com/lit/pdf/spyy007 (accessed on 12 October 2021).
- Machado, S.; Mancheno, S. Automotive FMCW Radar Development and Verification Methods. Master’s thesis, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden, 2018. [Google Scholar]
- Purnomo, A.T.; Lin, D.B.; Adiprabowo, T.; Hendria, W.F. Non-Contact Monitoring and Classification of Breathing Pattern for the Supervision of People Infected by COVID-19. Sensors 2021, 21, 3172. [Google Scholar] [CrossRef] [PubMed]
This Work | [5] | [6] | |
Radar | FMCW | FMCW | FMCW |
Frequency | 77–81 GHz | 77–81 GHz | 76–81 GHz |
Multiple target separation | 2D-FFT | Angular position (AoA) | X |
Maximum Range | 2.55 m | 4.3 m | 2 m |
Concurrent Detection | 4 people | 2 people | 1 person |
Experiment Environment | Indoor environment | - | Bedroom environment |
Target 1 | Target 2 | Target 3 | Target 4 | |
---|---|---|---|---|
Heartbeat rate | 69 | 80 | 69 | 75 |
Breathing rate | 10 | 21 | 16 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adiprabowo, T.; Lin, D.-B.; Wang, T.-H.; Purnomo, A.T.; Pramudita, A.A. Human Vital Signs Detection: A Concurrent Detection Approach. Appl. Sci. 2022, 12, 1077. https://doi.org/10.3390/app12031077
Adiprabowo T, Lin D-B, Wang T-H, Purnomo AT, Pramudita AA. Human Vital Signs Detection: A Concurrent Detection Approach. Applied Sciences. 2022; 12(3):1077. https://doi.org/10.3390/app12031077
Chicago/Turabian StyleAdiprabowo, Tjahjo, Ding-Bing Lin, Tse-Hsuan Wang, Ariana Tulus Purnomo, and Aloysius Adya Pramudita. 2022. "Human Vital Signs Detection: A Concurrent Detection Approach" Applied Sciences 12, no. 3: 1077. https://doi.org/10.3390/app12031077
APA StyleAdiprabowo, T., Lin, D. -B., Wang, T. -H., Purnomo, A. T., & Pramudita, A. A. (2022). Human Vital Signs Detection: A Concurrent Detection Approach. Applied Sciences, 12(3), 1077. https://doi.org/10.3390/app12031077