Evaluation of Multi-Source High-Resolution Remote Sensing Image Fusion in Aquaculture Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Data
2.3. Evaluation Methodology
2.3.1. Statistical Parameters
2.3.2. CQmax Index
3. Results
3.1. Enclosure Aquaculture Fusion Evaluation
3.1.1. GF-1 Fusion Evaluation
3.1.2. GF-2 Fusion Evaluation
3.1.3. WV-2 Fusion Evaluation
3.1.4. Image Fusion Evaluation Index—CQmax
3.2. Raft Culture Zone Fusion Evaluation
3.2.1. GF-1 Fusion Evaluation
3.2.2. GF-2 Fusion Evaluation
3.2.3. WV-2 Fusion Evaluation
3.2.4. Image Fusion Evaluation Index—CQmax
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Description | Acronym |
Remote sensing | RS |
Ground sampling distances | GSD |
Multispectral | MS |
Panchromatic | PAN |
Hyperspectral | HS |
Principal component analysis | PCA |
Gram–Schmidt | GS |
Nearest neighbor diffusion | NNDiffuse |
Gaofen-1 | GF-1 |
Gaofen-2 | GF-2 |
WorldView-2 | WV-2 |
Appendix B
Name | Expression | Feature |
Gray mean Value | M and N are the numbers of image rows and columns, and A (i, j) is the gray value of the corresponding pixel. | The closer the average value is to the multi-spectral image average, the smaller the spectral distortion. |
Standard deviation | M and N are the numbers is the difference between the gray level and average gray level of each pixel. | The larger the standard deviation, the more scattered the gray level distribution, the larger the contrast of the image, and the more convenient the information extraction. |
Information entropy | M is the maximum gray level of the image, and Pi is the probability of gray level i. | The larger the entropy value of the fused image, the more the information of the fused image increases. |
Average gradient | M and N are the numbers are the gray value changes of the fusion image in the x and y directions, respectively. | The larger the average gradient, the clearer the layers of the image and the higher the sharpness of the image. |
Correlation coefficient | ef and eg are the averages of the two images, and M and N are the height and width of the images, respectively. | The larger the correlation coefficient between the fused image and the multi-spectral image indicates that the higher the degree of integration of high-frequency information, the smaller the degree of image spectral variation. |
Spectral distortion | M and N are the numbers of rows and columns of the image, F (i, j) represents the gray value of the fusion image, and A (i, j) is the gray value of the original multispectral image. | The greater the degree of distortion, the higher the degree of spectral distortion of the image. |
Bias index | M and N are the numbers of rows and columns of the image, F (i, j) represents the gray value of the fused image, and A (i, j) represents the gray value of the original multispectral image. | The smaller the deviation index, the higher the spectral information retention of the image before and after fusion. |
References
- Tan, Y.; Shen, Z.; Jia, C.Y.; Wang, X.H.; Deng, J.S. The Study on Image Fusion for Medium and High Spatial Resolution Remote Sensing Images. Remote Sens. Technol. Appl. 2007, 22, 536–542. (In Chinese) [Google Scholar]
- Ehlers, M.; Jacobsen, K.; Schiewe, J. High resolution image data and GIS. In ASPRS Manual of GIS; Madden, M., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2009; pp. 721–777. [Google Scholar]
- Cliche, G.; Bonn, F.; Teillet, P. Integration of the SPOT pan channel into its multispectral mode for image sharpness enhancement. Photogramm. Eng. Remote Sens. 1985, 51, 311–316. [Google Scholar]
- Welch, R.; Ehlers, M. Merging multiresolution SPOT HRV and Landsat TM data. Photogramm. Eng. Remote Sens. 1987, 53, 301–303. [Google Scholar]
- Chavez, W.J.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data: TM and SPOT pan. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. [Google Scholar]
- Ehlers, M. Multisensor image fusion techniques in remote sensing. ISPRS J. Photogramm. Remote Sens. 1991, 46, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Basaeed, E.; Bhaskar, H.; Al-Mualla, M. Beyond Pan-sharpening: Pixel-level Fusion in Remote Sensing Applications. In Proceedings of the International Conference on Innovations in Information Technology, Abu Dhabi, United Arab Emirates, 18–20 March 2012; pp. 139–144. [Google Scholar]
- Zhang, Y. Methods for image fusion quality assessment-A review, comparison and analysis. Remote Sens. Spat. Inf. Sci. 2008, B7, 1101–1109. [Google Scholar]
- Ojeda, S.M.; Lamberti, W.P.; Vallejos, O.R. Measure of similarity between images based on the co-dispersion coefficient. J. Electron. Imaging 2012, 21, 023019. [Google Scholar] [CrossRef]
- Pistonesi, S.; Martinez, J.; Ojeda, S.M.; Vallejos, R. A Novel Quality Image Fusion Assessment Based on Maximum Codispersion. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2015: Lecture Notes in Computer Science; Pardo, A., Kittler, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 9423, pp. 383–390. [Google Scholar]
- Wu, R.; He, X.; Wang, J. Quality assessment of fusion of ZY-3 multispectral and panchromatic images for coastal wetland areas. High Technol. Lett. 2015, 25, 157–162. [Google Scholar]
- Wei, W.; Wang, Z.; Wang, C. A Quality Assessment for Remote Sensing Image Fusion. J. Image Graph. 2009, 14, 1488–1493. [Google Scholar]
- Cao, L.; Naylor, R.; Henriksson, P.; Leadbitter, D.; Metian, M.; Troell, M.; Zhang, W. China’s aquaculture and the world’s wild fisheries. Science 2015, 347, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Agriculture Organization of the United Nations. Fisheries Department. The State of World Fisheries and Aquaculture; Food & Agriculture Organization: Rome, Italy, 2000; Volume 3. [Google Scholar]
- Froehlich, H.E.; Gentry, R.R.; Halpern, B.S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2018, 2, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Ross, L.G.; Handisyde, N.; Bueno, P.B.; Beveridge, M.C.; Dabbadie, L.; Aguilar-Manjarrez, J.; Cai, J.N.; Pongthanapanich, T. Climate Change and Aquaculture: Vulnerability and Adaptation Options. In Impacts of Climate Change on Fisheries and Aquaculture; FAO Fisheries and Aquaculture Technical Paper No. 627; FAO: Rome, Italy, 2019; pp. 65–490. [Google Scholar]
- Meaden, G.J.; Aguilar-Manjarrez, J. (Eds.) Advances in Geographic Information Systems and Remote Sensing for Fisheries and Aquaculture; FAO Fisheries and Aquaculture Technical Paper No. 552; FAO: Rome, Italy, 2013. [Google Scholar]
- Cao, L.; Gu, W.J.; Li, X.S.; Hua, C.J.; Zhou, W.F. Remote sensing investigation on the distribution of oyster culture based on WorldView Satellite data in the Iron Bay of Zhejiang Province. Fish. Inf. Strategy 2016, 31, 286–292. (In Chinese) [Google Scholar]
- Zhou, W.F.; Cao, L.; Li, X.S.; Cheng, T.F. Assessments of Fusion Methods Using WorldView-2 Satellite Images for Coastal Oyster Culture Observation. Remote Sens. Technol. Appl. 2018, 33, 103–109. (In Chinese) [Google Scholar]
- González-Audícana, M.; Saleta, J.L.; Catalán, R.G.; García, R. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1291–1299. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Y. Adaptive steepest descent method for pan-sharpening of multispectral images. Opt. Eng. 2011, 50, 62–65. [Google Scholar] [CrossRef]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6011875A, 4 January 2000. [Google Scholar]
- Sun, W.H.; Chen, B.; Messinger, D. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Opt. Eng. 2014, 53, 013107. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-1 (accessed on 10 January 2022).
- Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-2 (accessed on 10 January 2022).
- Available online: https://www.satimagingcorp.com/satellite-sensors/worldview-2/ (accessed on 10 January 2022).
- Zhou, J.; Ai, H.; Zhang, L. A Comparative Study of Method of GF-1 Remote Sensing Image Fusion. Geospat. Inf. 2016, 14, 47–49. (In Chinese) [Google Scholar]
- Ojeda, S.; Britos, G.; Vallejos, R. An image quality index based on coefficients of spatial association with an application to image fusion. Spat. Stat. 2018, 23, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jiang, G.; Chen, F.; Yu, M.; Shao, F.; Peng, Z.J. Adaptive image quality assessment method based on structural similarity. J. Optoelectron. Laser 2014, 25, 378–385. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data Type | Band (μm) | Spatial Resolution | Image Date |
---|---|---|---|
GF-1 | Band1—blue 0.45–0.52 Band 2—green 0.52–0.59 Band 3—blue 0.63–0.69 Band 4—near infrared 0.77–0.89 | Panchromatic (2 m) Multi-spectral (8 m) | 15 February 2016 |
GF-2 | Band1—blue 0.45–0.52 Band 2—green 0.52–0.59 Band 3—blue 0.63–0.69 Band 4—near infrared 0.77–0.89 | Panchromatic (1 m) Multi-spectral (4 m) | 15 February 2016 |
WV-2 | Band 1—coast 0.40–0.50 Band 2—blue 0.45–0.51 Band 3—green 0.51–0.58 Band 4—yellow 0.58–0.62 Band 5—red 0.63–0.69 Band 6—red edge 0.70–0.74 Band 7—near infrared 0.77–0.89 Band 8—near infrared 2 0.86–1.04 | Panchromatic (0.5 m) Multi-spectral (2 m) | 13 April 2017 |
GF-1 | Band | Gray Mean Value | Standard Deviation | Information Entropy | Average Gradient | Correlation Coefficient | Spectral Distortion | Bias Index |
---|---|---|---|---|---|---|---|---|
MS | Band1 | 241.31 | 27.52 | 6.29 | 6.30 | 0 | 0 | 0 |
Band2 | 240.13 | 33.84 | 6.67 | 9.77 | 0 | 0 | 0 | |
Band3 | 170.81 | 42.01 | 6.88 | 8.45 | 0 | 0 | 0 | |
Band4 | 121.72 | 55.78 | 7.09 | 8.77 | 0 | 0 | 0 | |
GS | Band1 | 460.57 | 208.45 | 9.47 | 41.50 | −0.01 | 184.01 | 0.76 |
Band2 | 609.64 | 249.43 | 9.77 | 47.57 | −0.03 | 376.00 | 0.79 | |
Band3 | 687.72 | 291.96 | 9.93 | 51.42 | 0.09 | 136.17 | 0.76 | |
Band4 | 1181.08 | 450.31 | 10.63 | 61.66 | 0.15 | 1059.36 | 10.43 | |
NNDiffuse | Band1 | 57.25 | 13.81 | 0 | 3.97 | −0.02 | 234.53 | 0.99 |
Band2 | 49.60 | 13.48 | 0 | 3.52 | −0.02 | 190.53 | 1.60 | |
Band3 | 39.19 | 12.69 | 0 | 2.87 | 0.06 | 131.62 | 1.17 | |
Band4 | 20.53 | 10.49 | 0 | 1.66 | 0.14 | 101.18 | 0.80 | |
PCA | Band1 | 50.76 | 17.40 | 0 | 3.48 | −0.03 | 190.55 | 0.79 |
Band2 | 43.85 | 16.87 | 0 | 3.01 | −0.03 | 196.28 | 0.81 | |
Band3 | 34.64 | 15.58 | 0 | 2.49 | 0.09 | 517.24 | 0.79 | |
Band4 | 17.43 | 13.41 | 0 | 1.86 | 0.15 | 104.29 | 0.84 |
GF-2 | Band | Gray Mean Value | Standard Deviation | Information Entropy | Average Gradient | Correlation Coefficient | Spectral Distortion | Bias Index |
---|---|---|---|---|---|---|---|---|
MS | Band1 | 369.58 | 52.78 | 7.14 | 12.44 | 0 | 0 | 0 |
Band2 | 283.33 | 54.65 | 7.40 | 16.08 | 0 | 0 | 0 | |
Band3 | 213.50 | 66.09 | 7.68 | 16.38 | 0 | 0 | 0 | |
Band4 | 162.62 | 68.52 | 7.89 | 15.11 | 0 | 0 | 0 | |
GS | Band1 | 348.31 | 37.99 | 6.99 | 7.06 | 0.04 | 44.90 | 0.11 |
Band2 | 256.70 | 46.07 | 7.38 | 8.11 | 0.03 | 50.51 | 0.17 | |
Band3 | 200.05 | 60.68 | 7.66 | 9.41 | 0.13 | 60.17 | 0.27 | |
Band4 | 162.62 | 62.71 | 7.73 | 6.78 | 0.22 | 63.73 | 0.47 | |
NNDiffuse | Band1 | 365.35 | 68.59 | 7.78 | 18.69 | 0.03 | 57.28 | 0.15 |
Band2 | 282.42 | 63.90 | 7.81 | 14.90 | 0.02 | 57.62 | 0.20 | |
Band3 | 203.16 | 72.56 | 7.94 | 12.39 | 0.12 | 65.15 | 0.30 | |
Band4 | 173.00 | 65.93 | 7.81 | 9.71 | 0.23 | 65.96 | 0.50 | |
PCA | Band1 | 338.85 | 80.12 | 8.06 | 17.24 | 0.05 | 73.68 | 0.19 |
Band2 | 262.37 | 77.43 | 8.08 | 13.64 | 0.04 | 70.82 | 0.24 | |
Band3 | 217.93 | 84.43 | 8.17 | 11.28 | 0.14 | 73.96 | 0.34 | |
Band4 | 160.79 | 83.76 | 8.16 | 11.28 | 0.23 | 75.44 | 0.56 |
WV-2 | Band | Gray Mean Value | Standard Deviation | Information Entropy | Average Gradient | Correlation Coefficient | Spectral Distortion | Bias Index |
---|---|---|---|---|---|---|---|---|
MS | Band1 | 242.78 | 47.58 | 6.24 | 10.51 | 0 | 0 | 0 |
Band2 | 413.81 | 77.75 | 7.18 | 18.17 | 0 | 0 | 0 | |
Band3 | 230.29 | 106.68 | 7.71 | 21.73 | 0 | 0 | 0 | |
Band4 | 239.77 | 216.10 | 7.80 | 30.44 | 0 | 0 | 0 | |
GS | Band1 | 241.04 | 40.81 | 6.76 | 5.26 | −0.06 | 39.24 | 0.15 |
Band2 | 319.48 | 71.53 | 7.58 | 7.58 | −0.04 | 66.97 | 0.20 | |
Band3 | 250.67 | 100.53 | 7.93 | 7.36 | 0.01 | 96.35 | 0.41 | |
Band4 | 285.53 | 218.18 | 8.07 | 9.58 | 0.25 | 180.01 | 1.06 | |
NNDiffuse | Band1 | 241.30 | 35.11 | 6.26 | 5.15 | −0.01 | 32.94 | 0.12 |
Band2 | 320.56 | 67.18 | 7.17 | 7.60 | 0.01 | 59.79 | 0.18 | |
Band3 | 247.81 | 104.89 | 7.63 | 7.62 | 0.07 | 91.09 | 0.38 | |
Band4 | 252.25 | 224.58 | 7.61 | 10.34 | 0.25 | 168.68 | 0.85 | |
PCA | Band1 | 238.53 | 47.76 | 6.98 | 8.44 | −0.06 | 42.04 | 0.16 |
Band2 | 315.84 | 72.57 | 7.70 | 10.74 | −0.04 | 68.03 | 0.20 | |
Band3 | 248.23 | 97.65 | 7.97 | 9.83 | 0.01 | 96.15 | 0.41 | |
Band4 | 283.60 | 215.12 | 8.22 | 13.88 | 0.25 | 179.63 | 1.05 |
GF-1 | Band | Gray Mean Value | Standard Deviation | Information Entropy | Average Gradient | Correlation Coefficient | Spectral Distortion | Bias Index |
---|---|---|---|---|---|---|---|---|
MS | Band1 | 256.57 | 4.53 | 4.20 | 0.78 | 0 | 0 | 0 |
Band2 | 246.70 | 6.61 | 4.76 | 1.21 | 0 | 0 | 0 | |
Band3 | 143.39 | 6.55 | 4.69 | 0.88 | 0 | 0 | 0 | |
Band4 | 67.99 | 4.87 | 4.29 | 0.97 | 0 | 0 | 0 | |
GS | Band1 | 195.62 | 4.82 | 4.27 | 1.43 | 0.17 | 50.95 | 0.21 |
Band2 | 195.48 | 6.08 | 4.61 | 1.49 | 0.28 | 51.22 | 0.21 | |
Band3 | 102.91 | 5.06 | 4.35 | 1.13 | 0.29 | 40.47 | 0.28 | |
Band4 | 26.52 | 4.53 | 4.16 | 1.26 | 0.12 | 41.47 | 0.61 | |
NNDiffuse | Band1 | 245.11 | 6.81 | 4.73 | 2.43 | 0.14 | 6.74 | 0.03 |
Band2 | 245.42 | 7.88 | 4.96 | 2.42 | 0.23 | 9.06 | 0.04 | |
Band3 | 141.54 | 5.56 | 4.49 | 1.43 | 0.28 | 7.63 | 0.05 | |
Band4 | 67.82 | 3.81 | 3.95 | 0.80 | 0.20 | 5.42 | 0.80 | |
PCA | Band1 | 190.01 | 4.81 | 4.28 | 1.42 | 0.18 | 56.58 | 0.23 |
Band2 | 189.88 | 6.02 | 4.59 | 1.46 | 0.28 | 56.82 | 0.23 | |
Band3 | 98.57 | 5.05 | 4.35 | 1.14 | 0.28 | 44.82 | 0.31 | |
Band4 | 22.51 | 4.62 | 4.20 | 1.24 | 0.12 | 45.48 | 0.67 |
GF-2 | Band | Gray Mean Value | Standard Deviation | Information Entropy | Average Gradient | Correlation Coefficient | Spectral Distortion | Bias Index |
---|---|---|---|---|---|---|---|---|
MS | Band1 | 365.22 | 4.65 | 3.99 | 1.38 | 0 | 0 | 0 |
Band2 | 281.02 | 5.77 | 4.25 | 1.38 | 0 | 0 | 0 | |
Band3 | 157.28 | 9.09 | 4.32 | 1.26 | 0 | 0 | 0 | |
Band4 | 58.15 | 10.60 | 3.75 | 0.28 | 0 | 0 | 0 | |
GS | Band1 | 279.78 | 12.89 | 4.59 | 5.28 | 0.04 | 85.56 | 0.23 |
Band2 | 213.61 | 9.97 | 4.47 | 4.07 | 0.03 | 67.49 | 0.24 | |
Band3 | 103.82 | 8.70 | 3.96 | 3.21 | 0.08 | 53.56 | 0.34 | |
Band4 | 81.63 | 8.80 | 4.01 | 2.05 | 0.03 | 9.78 | 0.16 | |
NNDiffuse | Band1 | 361.97 | 23.59 | 5.58 | 9.93 | 0.04 | 13.87 | 0.04 |
Band2 | 277.39 | 17.97 | 5.29 | 7.57 | 0.03 | 11.67 | 0.04 | |
Band3 | 150.20 | 10.68 | 4.28 | 4.27 | 0.03 | 8.73 | 0.05 | |
Band4 | 56.26 | 5.78 | 3.64 | 1.17 | 0.03 | 2.05 | 0.03 | |
PCA | Band1 | 261.14 | 13.14 | 4.56 | 5.30 | 0.01 | 104.13 | 0.29 |
Band2 | 199.04 | 10.17 | 4.49 | 4.16 | 0.03 | 82.02 | 0.29 | |
Band3 | 93.10 | 8.65 | 4.04 | 3.24 | 0.09 | 64.22 | 0.41 | |
Band4 | 25.89 | 7.75 | 1.92 | 1.89 | 0.03 | 11.56 | 0.20 |
WV-2 | Band | Gray Mean Value | Standard Deviation | Information Entropy | Average Gradient | Correlation Coefficient | Spectral Distortion | Bias Index |
---|---|---|---|---|---|---|---|---|
MS | Band1 | 231.59 | 3.45 | 3.62 | 2.24 | 0 | 0 | 0 |
Band2 | 302.74 | 7.41 | 4.67 | 3.51 | 0 | 0 | 0 | |
Band3 | 198.27 | 9.08 | 5.10 | 3.36 | 0 | 0 | 0 | |
Band4 | 97.99 | 10.61 | 4.73 | 5.20 | 0 | 0 | 0 | |
GS | Band1 | 219.43 | 12.87 | 4.57 | 4.58 | 0.03 | 16.07 | 0.07 |
Band2 | 286.38 | 17.47 | 5.40 | 6.12 | 0.02 | 21.70 | 0.07 | |
Band3 | 186.29 | 17.56 | 5.68 | 4.91 | 0.07 | 19.29 | 0.10 | |
Band4 | 92.01 | 23.74 | 5.79 | 5.39 | 0.04 | 19.34 | 0.19 | |
NNDiffuse | Band1 | 235.55 | 12.83 | 4.80 | 5.06 | 0.02 | 7.32 | 0.03 |
Band2 | 307.96 | 17.38 | 5.56 | 6.73 | 0.02 | 12.17 | 0.04 | |
Band3 | 202.27 | 17.01 | 5.69 | 4.91 | 0.10 | 15.74 | 0.08 | |
Band4 | 105.76 | 21.35 | 5.49 | 4.49 | 0.04 | 14.03 | 0.14 | |
PCA | Band1 | 241.88 | 13.93 | 5.13 | 5.08 | 0.04 | 11.70 | 0.05 |
Band2 | 314.94 | 19.25 | 5.85 | 6.73 | 0.01 | 16.01 | 0.05 | |
Band3 | 207.90 | 17.43 | 5.79 | 5.14 | 0.01 | 15.74 | 0.08 | |
Band4 | 118.16 | 22.76 | 5.95 | 6.90 | 0.06 | 22.70 | 0.23 |
Aquaculture Type | Quantitative Evaluation Method | GF-1 | GF-2 | WV-2 |
---|---|---|---|---|
Enclosure seine culture | Seven statistic indexes | GS | PCA | PCA |
CQmax | PCA | NNDiffuse | NNDiffuse | |
Floating raft culture area | Seven statistic indexes | NNDiffuse | NNDiffuse | PCA |
CQmax | NNDiffuse | NNDiffuse | PCA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Wang, F.; Wang, X.; Tang, F.; Li, J. Evaluation of Multi-Source High-Resolution Remote Sensing Image Fusion in Aquaculture Areas. Appl. Sci. 2022, 12, 1170. https://doi.org/10.3390/app12031170
Zhou W, Wang F, Wang X, Tang F, Li J. Evaluation of Multi-Source High-Resolution Remote Sensing Image Fusion in Aquaculture Areas. Applied Sciences. 2022; 12(3):1170. https://doi.org/10.3390/app12031170
Chicago/Turabian StyleZhou, Weifeng, Fei Wang, Xi Wang, Fenghua Tang, and Jiasheng Li. 2022. "Evaluation of Multi-Source High-Resolution Remote Sensing Image Fusion in Aquaculture Areas" Applied Sciences 12, no. 3: 1170. https://doi.org/10.3390/app12031170
APA StyleZhou, W., Wang, F., Wang, X., Tang, F., & Li, J. (2022). Evaluation of Multi-Source High-Resolution Remote Sensing Image Fusion in Aquaculture Areas. Applied Sciences, 12(3), 1170. https://doi.org/10.3390/app12031170