Effect of Post-Activation Potentiation on Sprint Performance after Combined Electromyostimulation and Back Squats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Anthropometric Measurements
2.3. Smith Machine Back Squat 1 Repetition Maximum Test
2.4. Electromyostimulation Application
2.5. 30 m Sprint Test
2.6. Standard Warm-Up Protocol
2.7. PAP Protocols
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tillin, N.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Chatzopoulos, D.; Michailidis, C.; Giannakos, A.; Alexiou, K.; Patikas, D.; Antonopoulos, C.; Kotzamanidis, C. Post-activation potentiation effects after heavy resistance exercise on running speed. J. Strength Cond. Res. 2007, 21, 1278–1281. [Google Scholar] [PubMed]
- Seitz, L.B.; Trajano, G.S.; Haff, G.G. The back squat and the power clean: Elicitation of different degrees of potentiation. J. Phys. Act. Health 2014, 9, 643–649. [Google Scholar] [CrossRef]
- Yagci, S.; Pelvan, S.O. Investigation effects of different contraction methods on post-activation potential. Türkiye Klin. J. Sports Sci. 2019, 11, 138–145. [Google Scholar]
- Till, K.A.; Cooke, C. The effects of post-activation potentiation on sprint and jump performance of male academy soccer players. J. Strength Cond. Res. 2009, 23, 1960–1967. [Google Scholar] [CrossRef]
- Kacoglu, C.; Kirkaya, I. The acute effects of pre-conditioning activities with a weighted vest on subsequent linear sprint and change of direction performance in physical education students. Asian J. Educ. Train. 2020, 6, 341–346. [Google Scholar] [CrossRef]
- Menéndez, H.; Ferrero, C.; Martín-Hernández, J.; Fıgueroa, A.; Marín, P.J.; Herrero, A.J. Acute effects of simultaneous electromyostimulation and vibration on leg blood flow in spinal cord injury. Spinal Cord 2016, 54, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Babault, N.; Cometti, G.; Bernardin, M.; Pousson, M.; Chatard, J.C. Effects of electromyostimulation training on muscle strength and power of elite rugby players. J. Strength Cond. Res. 2007, 21, 431–437. [Google Scholar]
- Herrero, J.A.; Izquierdo, M.; Maffiuletti, N.A.; Garcia, L.J. Electromyostimulation and plyometric training effects on jumping and sprint time. Int. J. Sports Med. 2006, 27, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Maffiuletti, N.A.; Cometti, G.; Amiridis, I.G.; Martin, A.; Pousson, M.; Chatard, J.C. The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. Int. J. Sports Med. 2000, 2, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Requena, B.; Gapeyeva, H.; García, I.; Ereline, J.; Pääsuke, M. Twitch potentiation after voluntary versus electrically induced isometric contractions in human knee extensor muscles. Eur. J. Appl. Physiol. 2008, 104, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, A.J.; Clair, J.M.; Lagerquist, O.; Mang, C.S.; Okuma, Y.; Collins, D.F. Neuromuscular electrical stimulation: Implications of the electrically evoked sensory volley. Eur. J. Appl. Physiol. 2011, 111, 2409–2426. [Google Scholar] [CrossRef] [PubMed]
- Peckham, P.H.; Knutson, J.S. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 2005, 7, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Henneman, E.; Somjen, G.; Carpenter, D.O. Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 1965, 28, 599–620. [Google Scholar] [CrossRef]
- Henneman, E.; Somjen, G.; Carpenter, D.O. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 1965, 28, 560–580. [Google Scholar] [CrossRef]
- Mendell, L.M. The size principle: A rule describing the recruitment of motoneurons. J. Neurophysiol. 2005, 93, 3024–3026. [Google Scholar] [CrossRef] [Green Version]
- Dudley, G.A.; Stevenson, S.W. Use of Electrical Stimulation in Strength and Power Training. In Strength and Power in Sport, 1st ed.; Pavoo, V.K., Ed.; Blackwell Science: Oxford, UK, 2008; pp. 426–437. [Google Scholar]
- Gregory, C.M.; Bickel, C.S. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys. Ther. 2005, 85, 358–364. [Google Scholar] [CrossRef] [Green Version]
- American College of Sports Medicine; Robert, S.A. Muscle Strength Assessment. In Acsm’s Exercise Testing and Prescription, 1st ed.; Madeline, P.B., Ann, M.S., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2018; pp. 185–186. [Google Scholar]
- Cohen, J.A. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Healy, R.; Comyns, T.M. The application of post-activation potentiation methods to improve sprint speed. Strength Cond. J. 2017, 39, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Beckerman, H.; Roebroeck, M.; Lankhorst, G.; Becher, J.; Bezemer, P.D.; Verbeek, A. Smallest real difference, a link between reproducibility and responsiveness. Qual. Life Res. 2001, 10, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Bernards, J.R.; Sato, K.; Haff, G.G.; Bazyler, C.D. Current research and statistical practices in sport science and a need for change. Sports 2017, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacoglu, C.; Kale, M. Acute effects of lower body electromyostimulation application with two different frequencies on isokinetic strength and jumping performance. J. Phys. Educ. Sport 2016, 16, 38–45. [Google Scholar]
- Bickel, C.S.; Gregory, C.M.; Dean, J.C. Motor unit recruitment during neuromuscular electrical stimulation: A critical appraisal. Eur. J. Appl. Physiol. 2011, 111, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Anthi, X.; Dimitrios, P.; Christos, K. On the mechanisms of post-activation potentiation: The contribution of neural factors. J. Phys. Educ. Sport 2014, 14, 134–137. [Google Scholar]
- Enoka, R.M. Activation order of motor axons in electrically evoked contractions. Muscle Nerve 2002, 25, 763–764. [Google Scholar] [CrossRef] [PubMed]
- Seyri, K.M.; Maffiuletti, N.A. Effect of electromyostimulation training on muscle strength and sports performance. Strength Cond. J. 2011, 33, 70–75. [Google Scholar] [CrossRef]
- Anthi, X.; Laparidis, K.; Kyranoudis, A.; Galazoulas, C.H.; Bassa, E.; Kotzamanidis, C. Post-activation potentiation: Factors affecting it and the effect on performance. J. Phys. Educ. Sport 2010, 28, 32–38. [Google Scholar]
- Seitz, L.B.; Haff, G.G. Factors modulating post-activation potentiation of jump, sprint, throw and upper-body ballistic performances: A systematic review with meta-analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of post-activation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef]
- Ruben, R.M.; Molinari, M.A.; Bibbee, C.A.; Childress, M.A.; Harman, M.S.; Reed, K.P.; Haff, G.G. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J. Strength Cond. Res. 2010, 24, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Villarreal, E.S.; Haff, G.G. The temporal profile of post-activation potentiation is related to strength level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Z.; Barnes, J.L. The fitness-fatigue model revisited: Implications for planning short and long term training. Strength Cond. J. 2003, 25, 42–51. [Google Scholar] [CrossRef]
- Hamada, T.; Sale, D.G.; Macdougall, J.D.; Tarnopolsky, M.A. Post-activation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000, 88, 2131–2137. [Google Scholar] [CrossRef]
- Lim, J.J.; Kong, P.W. Effects of isometric and dynamic post-activation potentiation protocols on maximal sprint performance. J. Strength Cond. Res. 2013, 27, 2730–2736. [Google Scholar] [CrossRef]
- Boullosa, D.; Beato, M.; Dello Iacono, A.; Cuenca-Fernández, F.; Doma, K.; Schumann, M.; Zagatto, A.M.; Loturco, I.; Behm, D.G. A new taxonomy for post-activation potentiation in sport. Int. J. Sports Physiol. Perform. 2020, 19, 1–4. [Google Scholar] [CrossRef]
- Robbins, D.W. Post-activation potentiation and its practical applicability: A brief review. J. Strength Cond. Res. 2005, 19, 453–458. [Google Scholar]
CON | BS | EMS | BS + EMS | |
---|---|---|---|---|
Distance (m) | Mean ± SD (s) | |||
10 | 1.96 ± 0.07 | 1.98 ± 0.08 | 2.00 ± 0.07 | 2.00 ± 0.10 |
30 | 4.67 ± 0.22 | 4.65 ± 0.22 | 4.70 ± 0.22 | 4.70 ± 0.26 |
Distance (m) | F | p | ηp2 |
---|---|---|---|
10 | 2.40 | 0.10 | 0.13 |
30 | 1.94 | 0.13 | 0.11 |
10 m (s) | 30 m (s) | |||||||
---|---|---|---|---|---|---|---|---|
CON | BS | EMS | BS + EMS | CON | BS | EMS | BS + EMS | |
1 | 1.94 | 1.93 | 1.98 | 1.94 | 4.60 | 4.61 | 4.72 | 4.59 |
2 | 1.94 | 1.88 | 2.06 | 2.03 | 4.66 | 4.69 | 4.92 | 4.85 |
3 | 1.97 | 1.96 | 1.98 | 1.98 | 4.77 | 4.61 | 4.62 | 4.65 |
4 | 2.00 | 2.02 | 2.04 | 2.02 | 4,72 | 4.62 | 4.74 | 4.76 |
5 | 2.06 | 2.07 | 2.07 | 2.11 | 4.79 | 4.77 | 4.77 | 4.91 |
6 | 2.01 | 2.09 | 2.12 | 2.21 | 5.26 | 5.20 | 5.15 | 5.39 |
7 | 1.99 | 2.09 | 2.02 | 1.99 | 4.65 | 4.74 | 4.68 | 4.61 |
8 | 1.98 | 2.00 | 1.95 | 2.00 | 4.56 | 4.50 | 4.52 | 4.54 |
9 | 1.95 | 1.85 | 2.03 | 1.88 | 4.52 | 4.39 | 4.61 | 4.44 |
10 | 1.82 | 2.05 | 1.85 | 1.84 | 4.42 | 4.52 | 4.40 | 4.43 |
11 | 1.98 | 1.95 | 2.01 | 1.99 | 4.67 | 4.52 | 4.77 | 4.74 |
12 | 1.93 | 1.97 | 2.02 | 2.01 | 4.62 | 4.78 | 4.79 | 4.81 |
13 | 1.86 | 1.81 | 1.86 | 1.83 | 4.30 | 4.21 | 4.26 | 4.23 |
14 | 1.89 | 1.95 | 1.98 | 1.97 | 4.50 | 4.71 | 4.65 | 4.62 |
15 | 2.05 | 2.03 | 2.04 | 2.03 | 4.80 | 4.68 | 4.69 | 4.71 |
16 | 2.09 | 2.07 | 2.14 | 2.18 | 4.98 | 4.91 | 5.06 | 5.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sari, C.; Koz, M.; Salcman, V.; Gabrys, T.; Karayigit, R. Effect of Post-Activation Potentiation on Sprint Performance after Combined Electromyostimulation and Back Squats. Appl. Sci. 2022, 12, 1481. https://doi.org/10.3390/app12031481
Sari C, Koz M, Salcman V, Gabrys T, Karayigit R. Effect of Post-Activation Potentiation on Sprint Performance after Combined Electromyostimulation and Back Squats. Applied Sciences. 2022; 12(3):1481. https://doi.org/10.3390/app12031481
Chicago/Turabian StyleSari, Cengizhan, Mitat Koz, Vaclav Salcman, Tomasz Gabrys, and Raci Karayigit. 2022. "Effect of Post-Activation Potentiation on Sprint Performance after Combined Electromyostimulation and Back Squats" Applied Sciences 12, no. 3: 1481. https://doi.org/10.3390/app12031481
APA StyleSari, C., Koz, M., Salcman, V., Gabrys, T., & Karayigit, R. (2022). Effect of Post-Activation Potentiation on Sprint Performance after Combined Electromyostimulation and Back Squats. Applied Sciences, 12(3), 1481. https://doi.org/10.3390/app12031481