Comparison Study of the PSO and SBPSO on Universal Robot Trajectory Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artificial Potential Field
2.2. Particle Swarm Optimization (PSO)
Algorithm 1: The PSO algorithm is presented below |
Initialization: |
01: initialize the particle cloud |
02: repeat |
Loops 1: |
03: for i = 1 to m |
04: if f(xi) < f(pi) then pi = xi |
05: if f(xi) < f(g) then g = xi |
06: end if |
07: end if |
Loop.2: |
08: for j = 1 to n |
09: r1 = rand(), r2 = rand() |
10: vij = wvij + c1r1(pi − xij) + c2r2(gj − xij) |
11: end to |
Function: |
12: xi = xi + vi |
13: end to |
14: until you meet the stop criteria |
2.3. Serendipity-Based Particle Swarm Optimization
Algorithm 2: SBPSO pseudocode using scout particles |
Initialization: |
01: initialize swarm speed and position |
02: initialize speed and position of the Girl Scouts |
03: while stop criteria not satisfied of the |
loop.1: |
04: for all particle i in S do |
05: calculate fitness value |
Condition: |
06: if fit(xid) < fit(pBesti) then pBesti ← xid |
07: end if |
08: end for |
Function: |
09: bestswarm← get Best Particle Swarm() |
loop.2: |
10: for all Girl Scout k in S do |
function: |
11: determine fitness value |
condition: |
12: if fit(Girl scoutkd) < fit(pBestkd) then pBestkd← Girl scoutkd |
13: end if |
14: end for |
function |
15: best Girl Scout ← getBest Girl Scout() |
condition: |
16: if fit(bestswarm) < fit(best Girl Scout) and fit(bestswarm) < fit(gBest) then gBest ← bestswarm |
17: else if fit(best Girl Scout) < fit(bestswarm) and fit(best Girl Scout) < fit(gBest) then gBest ← best Girl Scout |
18: end if |
19: end if |
20: creates n adjacent points (AP) using Equation (15) |
loop.3 |
21: for all AP of the |
22: define n director vectors using Equation (16) |
23: for each vector do |
24: Create two IP using Equation (17) |
25: end for |
26: end for |
27: gBest ← getBest Inspection Point() |
Loop.4 |
28: for all particle i in S do |
29: determine speed using Equation (11) |
30: update position using Equation (12) |
31: end for |
Loop.5 |
32: for each Girl Scout k in S do |
33: calculate speed using Equation (13) |
34: update position using Equation (14) |
35: end for |
36: if (swarm stagnated) and (swarm converged) then Resets Girl Scout Position and Speed |
37: end if |
38: end while |
2.4. Methods for Detecting Premature Convergence
- 1.
- Determines the greatest Euclidean distance between the gBest particle and a swarm particle. When this distance is smaller than a threshold distance termed stag, stagnation develops. Equation (17) is a form to present it:
- 2.
- Cluster Analysis consists of evaluating the percentage of the particle’s number of a cluster C. If the distance between a particle belongs to C and the gBest particle which is less than a threshold min, the convergence has occurred, when a percentage of particles in C reach a threshold max.
- 3.
- Objective Slope Function considers the position of particles in search space based on its normalized value and the change rate of objective function which is obtained through Equation (18):
2.5. Computational Experiments
- Sphere function—characterized by being simple, convex and unimodal. Its main function to evaluate the convergence rate of the search process are represented in Equation (19):
- 2.
- Rosenbrock function—has the global minimum in parabolic valley. In this function, the convergence is difficult [32]; this function is represented in Equation (20):
- 3.
- Griewank function—several local minimums regularly distribute and are represented in Equation (21):
- 4.
- Rastrigin function—it is a highly multimodal function; however, the locations of the various local minima are regularly distributed and represented in Equation (22):
- 5.
- HappyCat function—is characterized by being unimodal. This feature makes the algorithms of optimization find it difficult to escape from a “black groove” [33] represented in Equation (23):
- 6.
- Ackley function—there are several local minimums in the parabolic valley. If the function characterized by having an almost flat outer region represent in Equation (24):
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chappell, P. Mechatronic Hands Prosthetic and Robotic Design; Institution of Engineering and Technology: London, UK, 2016; 192p. [Google Scholar]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.F.; Mendonça, T.R.F.; Olivi, L.R.; Costa, E.B.; Marcato, A.L.M. Modified approach using variable charges to solve inherent limitations of potential fields method. In Proceedings of the 2014 11th IEEE/IAS International Conference on Industry Applications, Juiz de Fora, Brazil, 7–10 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Kaya, İ. Optimal and Analytical Tuning of I-PD Controllers for Controlling Stable Processes with Inverse Response. Balk. J. Electr. Comput. Eng. 2020, 8, 260–265. [Google Scholar] [CrossRef]
- Paiva, F.A.P.; Costa, J.A.F.; Silva, C.R.M. A Serendipity-Based Approach to Enhance Particle Swarm Optimization Using Scout Particles. IEEE Lat. Am. Trans. 2017, 15, 1101–1112. [Google Scholar] [CrossRef]
- Pintea, C.M. Advances in Bio-inspired Computing for Combinatorial Optimization Problems. In Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Silva, C.R.M.; Lins, H.W.C.; Martins, S.R.; Barreto, E.L.F.; D’Assunção, A.G. A multiobjective optimization of a UWB antenna using a self organizing genetic algorithm. Microw. Opt. Technol. Lett. 2012, 54, 1824–1828. [Google Scholar] [CrossRef]
- Dosciatti, E.R.; Junior, W.G.; Foronda, A. TQ/PSO—A new scheduler to optimize the time frame with PSO in WiMAX networks. IEEE Lat. Am. Trans. 2015, 13, 365–376. [Google Scholar] [CrossRef]
- Khan, A.; Hizam, H.; Wahab, N.I.b.A.; Othman, M.L. Optimal power flow using hybrid firefly and particle swarm optimization algorithm. PLoS ONE 2020, 15, e0235668. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Chi, J. Current Situation and Development Trend of Hydrogen Energy and Hydrogen Production Technology. Monogr. Rev. 2001, 20, 3. [Google Scholar] [CrossRef]
- Chen, A.P.; Huang, C.H.; Hsu, Y.C. A novel modified particle swarm optimization for forecasting financial time series. In Proceedings of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; Volume 1. [Google Scholar] [CrossRef]
- Jin, L.; Huang, Y. A Particle Swarm Optimization-Neural Network Prediction Model for Typhoon Intensity Based on Isometric Mapping Algorithm. In Proceedings of the 2012 Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26 June 2012; pp. 857–861. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, L.; Guan, Z.; Wu, J.; Du, X.; Zhao, H.; Guizani, M. An Optimizing and Differentially Private Clustering Algorithm for Mixed Data in SDN-Based Smart Grid. IEEE Access 2019, 7, 45773–45782. [Google Scholar] [CrossRef]
- Machado, R.B.; Boukerche, A.; Sobral, J.B.M.; Juca, K.R.L.; Notare, M.S.M.A. A hybrid artificial immune and mobile agent intrusion detection based model for computer network operations. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, Denver, CO, USA, 4–8 April 2005. [Google Scholar] [CrossRef]
- Caballe, S.; Xhafa, F.; Abraham, A. Towards an automatic real-time assessment of online discussions in Computer-Supported Collaborative Learning practices. In Proceedings of the 2008 Third International Conference on Digital Information Management, London, UK, 13–16 November 2008; pp. 470–475. [Google Scholar] [CrossRef] [Green Version]
- Oku, K.; Hattori, F. Fusion-based recommender system for improving serendipity. J. Jpn. Soc. Fuzzy Theory Intell. Inform. 2011, 25, 524–539. [Google Scholar]
- Adamopoulos, P.; Tuzhilin, A. On unexpectedness in recommender systems. ACM J. 2011, 5, 1–32. [Google Scholar] [CrossRef]
- Silva, A.; Neves, A.; Gonçalves, T. Using scout particles to improve a predator-prey optimizer. In Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Lausanne, Switzerland, 4–6 April 2013. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ho, T.F.; Shyu, S.J.; Lin, B.M.T. Discrete particle swarm optimization with scout particles for library materials acquisition. Sci. World J. 2013, 2013, 636484. [Google Scholar] [CrossRef]
- Campos, J.; de Figueiredo, A.D. Programming for Serendipity. SSRN Electr. J. 2011, 5, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Chakraborti, T.; Briggs, G.; Talamadupula, K.; Zhang, Y.; Scheutz, M.; Smith, D.; Kambhampati, S. Planning for serendipity. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015. [Google Scholar] [CrossRef]
- Lee, K.; Choi, D.; Kim, D. Incorporation of potential fields and motion primitives for the collision avoidance of unmanned aircraft. Appl. Sci. 2021, 7, 3103. [Google Scholar] [CrossRef]
- Weerakoon, T.; Ishii, K.; Nassiraei, A.A.F. An Artificial Potential Field Based Mobile Robot Navigation Method To Prevent From Deadlock. J. Artif. Intell. Soft Comput. Res. 2015, 5, 189–203. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Sun, J.; Palade, V.; Wu, X.; Shi, X. An improved Gaussian distribution based quantum-behaved particle swarm optimization algorithm for engineering shape design problems. Eng. Optim. 2021. [Google Scholar] [CrossRef]
- Ling, S.H.; Iu, H.H.C.; Chan, K.Y.; Lam, H.K.; Yeung, B.C.W.; Leung, F.H. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2008, 38, 743–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, K.; Duggan, J.; Howley, E. Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants. Neurocomputing 2017, 270, 188–197. [Google Scholar] [CrossRef]
- Evers, G.I.; Ghalia, M.B. Regrouping particle swarm optimization: A new global optimization algorithm with improved performance consistency across benchmarks. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009. [Google Scholar] [CrossRef] [Green Version]
- van den Bergh, F. An Analysis of Particle Swarm Optimizers. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2001. [Google Scholar]
- Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004. [Google Scholar] [CrossRef]
- Xi, M.; Sun, J.; Xu, W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 2008, 205, 751–759. [Google Scholar] [CrossRef]
- Sharma, M.; Chhabra, J.K. Sustainable automatic data clustering using hybrid PSO algorithm with mutation. Sustain. Comput. Inform. Syst. 2019, 23, 144–157. [Google Scholar] [CrossRef]
- Church, K.W. Benchmarks and goals. Nat. Lang. Eng. 2019, 26, 579–592. [Google Scholar] [CrossRef]
- Beyer, H.G.; Finck, S. HappyCat—A simple function class where well-known direct search algorithms do fail. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Taormina, Italy, 1–5 September 2012. [Google Scholar] [CrossRef]
- Patwal, R.S.; Narang, N.; Garg, H. A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units. Energy 2018, 142, 822–837. [Google Scholar] [CrossRef]
- Kazim, I.J.; Gang, T.Y.; Qaseer, L. Integration of DE Algorithm with PDC-APF for Enhancement of Contour Path Planning of a Universal Robot. Appl. Sci. 2021, 14, 6532. [Google Scholar] [CrossRef]
Parameter | kr | Ka | Ko |
---|---|---|---|
intensity | 2.29 | 5.250 | 0.489 |
Functions | Search Space | Initialization Range |
---|---|---|
f1 | ||
f2 | ||
f3 | ||
f4 | ||
f5 | ||
f6 |
Size of Population | Iteration | Fitness Value of Benchmark Functions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sphere Function | Rosenbrock Function | Griewak Function | Rastrigin Function | HappyCat Function | Ackley Function | ||||||||
20 | 1000 | PSO | SBPSO | PSO | SBPSO | PSO | SBPSO | PSO | SBPSO | PSO | SBPSO | PSO | SBPSO |
1.2196 × 10−31 | 3.7821 × 10−156 | 57.7381 | 1.4324 × 10−4 | 0.1692 | 0 | 3.9673 | 0 | 1.2226 × 10−14 | 1.3323 × 10−16 | 1.0284 × 10−10 | 9.2371 × 10−16 | ||
2000 | 2.9396 × 10−11 | 7.3821 × 10−124 | 150.7192 | 2.8091 × 10−2 | 0.0185 | 0 | 20.6732 | 0 | 2.0678 × 10−5 | 1.0736 × 10−11 | 2.1024 | 8.8818 × 10−16 | |
30 | 1000 | 1.9504 × 10−22 | 3.9011 × 10−129 | 29.6739 | 1.0476 × 10−4 | 0.0287 | 0 | 4.6732 | 0 | 3.6771 × 10−14 | 2.2204 × 10−16 | 0.4030 | 6.4310 × 10−16 |
2000 | 2.0422 × 10−10 | 9.7813 × 10−84 | 131.6743 | 1.9692 × 10−2 | 0.0532 | 0 | 37.8871 | 0 | 1.8586 × 10−6 | 4.5530 × 10−14 | 1.2258 | 9.7320 × 10−16 | |
50 | 1000 | 7.6959 × 10−28 | 2.5243 × 10−31 | 23.5431 | 9.9319 × 10−4 | 0.0659 | 0 | 1.9591 | 0 | 4.2327 × 10−15 | 2.3592 × 10−16 | 6.1342 | 7.6102 × 10−16 |
2000 | 1.5353 × 10−17 | 8.9143 × 10−120 | 64.9304 | 5.6966 × 10−3 | 0.0383 | 0 | 33.6462 | 0 | 3.9029 × 10−5 | 4.6358 × 10−13 | 1.8144 | 8.6098 × 10−16 |
Functions | Iteration | PSO | SBPSO |
---|---|---|---|
Sphere function | 1000 | 3.1403 × 10−22 | 3.7821 × 10−156 |
2000 | 1.4253 × 10−6 | 3.6721 × 10−81 | |
Rosenbrock function | 1000 | 57.7381 | 1.4324 × 10−4 |
2000 | 150.7192 | 2.8091 × 10−2 | |
Griewank function | 1000 | 0.1692 | 0 |
2000 | 0.0185 | 0 | |
Rastrigin function | 1000 | 3.9673 | 0 |
2000 | 48.7790 | 0 | |
HappyCat function | 1000 | 4.6100 | 0 |
1500 | 19.6670 | 0 | |
Ackley function | 1000 | 4.1558 × 10−11 | 0 |
2000 | 4.8007 × 10−11 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazim, I.J.; Tan, Y.; Li, R. Comparison Study of the PSO and SBPSO on Universal Robot Trajectory Planning. Appl. Sci. 2022, 12, 1518. https://doi.org/10.3390/app12031518
Kazim IJ, Tan Y, Li R. Comparison Study of the PSO and SBPSO on Universal Robot Trajectory Planning. Applied Sciences. 2022; 12(3):1518. https://doi.org/10.3390/app12031518
Chicago/Turabian StyleKazim, Issraa Jwad, Yuegang Tan, and Ruiya Li. 2022. "Comparison Study of the PSO and SBPSO on Universal Robot Trajectory Planning" Applied Sciences 12, no. 3: 1518. https://doi.org/10.3390/app12031518
APA StyleKazim, I. J., Tan, Y., & Li, R. (2022). Comparison Study of the PSO and SBPSO on Universal Robot Trajectory Planning. Applied Sciences, 12(3), 1518. https://doi.org/10.3390/app12031518