Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. γ-Irradiation and Characterization of Prepared Samples
3. Results and Discussion
3.1. Absorption Spectra of B-co-MP
3.2. Energy Band-Gap of B-co-MP
3.3. Carbon Atoms Number of B-co-MP
3.4. Fluorescence and ASE Spectra
3.5. ASE Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tessler, N. Lasers based on semiconducting organic materials. Adv. Mater. 1999, 11, 363–370. [Google Scholar] [CrossRef]
- Neureiter, H.; Gebauer, W.; Väterlein, C.; Sokolowski, M.; Bäuerle, P.; Umbach, E. Study of charge carrier injection and luminescence processes in oligothiophene-based light-emitting diodes. Synth. Met. 1994, 67, 173–176. [Google Scholar] [CrossRef]
- Graham, S.C.; Friend, R.H.; Fung, S.; Moratti, S.C. The effect of X-ray irradiation on poly (p-phenylene vinylene) and derivatives. Synth. Met. 1997, 84, 903–904. [Google Scholar] [CrossRef]
- Silva, E.A.B.; Borin, J.F.; Nicolucci, P.; Graeff, C.F.O.; Netto, T.G.; Bianchi, R.F. Low dose ionizing radiation detection using conjugated polymers. Appl. Phys. Lett. 2005, 86, 131902. [Google Scholar] [CrossRef]
- Lobez, J.M.; Swager, T.M. Radiation detection: Resistivity responses in functional poly (olefin sulfone)/carbon nanotube composites. Angew. Chem. Int. Ed. 2010, 49, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Dos Santos, D.A.; Brédas, J.L.; Lögdlund, M.; et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128. [Google Scholar] [CrossRef]
- Ho, P.K.; Kim, J.S.; Burroughes, J.H.; Becker, H.; Li, S.F.; Brown, T.M.; Cacialli, F.; Friend, R.H. Molecular-scale interface engineering for polymer light-emitting diodes. Nature 2000, 404, 481–484. [Google Scholar] [CrossRef]
- Martens, H.; Huiberts, J.; Blom, P. Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 1852–1854. [Google Scholar] [CrossRef] [Green Version]
- Crone, B.K.; Campbell, I.H.; Davids, P.S.; Smith, D.L. Charge injection and transport in single-layer organic light-emitting diodes. Appl. Phys. Lett. 1998, 73, 3162–3164. [Google Scholar] [CrossRef]
- Jang, J.W.; Lee, C.E.; Lee, D.W.; Jin, J.I. Transient electroluminescence study of mobility balancing in organic light-emitting diodes based on poly (p-phenylenevinylene) derivatives. Solid State Commun. 2004, 130, 265–268. [Google Scholar] [CrossRef]
- Lee, H.M.; Oh, D.K.; Lee, C.H.; Lee, C.E.; Lee, D.W.; Jin, J.I. Time-of-flight measurements of charge-carrier mobilities in a poly (p-phenylenevinylene) derivative carrying an electron-transporting moiety. Synth. Met. 2001, 119, 473–474. [Google Scholar] [CrossRef]
- Isa, N.M.; Baharin, R.; Majid, R.A.; Rahman, W.A.W. Optical properties of conjugated polymer: Review of its change mechanism for ionizing radiation sensor. Polym. Adv. Technol. 2017, 28, 1559–1571. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Hulliger, J. Current Opinion in Solid State & Materials Science-Molecular Crystals and Materials. Curr. Opin. Solid State Mater. Sci. 2001, 2, 105–106. [Google Scholar]
- Zhong, H.; Zhao, Y.; Li, Y.; Pei, Q. Photoluminescence quenching of conjugated polymer nanocomposites for gamma ray detection. Nanotechnology 2008, 19, 505503. [Google Scholar] [CrossRef]
- Mylnikov, V.S. Photoconducting polymers. In Photoconducting Polymers/Metal-Containing Polymers; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–88. [Google Scholar]
- Moses, D. High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye. Appl. Phys. Lett. 1992, 60, 3215–3216. [Google Scholar] [CrossRef]
- AlSalhi, M.S.; Ibnaouf, K.H.; Masilamani, V.; Yassin, O.A. Amplified spontaneous emission from internal energy transfer process in the copolymer BEHP-co-MEH-PPV. J. Lumin. 2012, 132, 484–490. [Google Scholar] [CrossRef]
- Ibnaouf, K.H.; Prasad, S.; Masilamani, V.; AlSalhi, M.S.; Mustapha, N.; Alyamani, A. Triple amplified spontaneous emissions from a conjugated copolymer BEHP-co-MEH-PPV in solution. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 53, 66–71. [Google Scholar] [CrossRef]
- Ibnaouf, K.H.; Prasad, S.; Al Salhi, M.S.; Hamdan, A.; Zaman, M.B.; El Mir, L. Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell. J. Lumin. 2014, 149, 369–373. [Google Scholar] [CrossRef]
- Mariani, M.; Consolati, G.; Quasso, F.; Lotti, N.; Munari, A.; Galletta, M.; Macerata, E. Effects of gamma irradiation on poly (ethylene isophthalate). J. Radioanal. Nucl. Chem. 2010, 286, 625–629. [Google Scholar] [CrossRef]
- Batagin-Neto, A.; Bronze-Uhle, E.S.; Fernandes, D.M.; Fratoddi, I.; Venditti, I.; Decker, F.; Bodo, E.; Russo, M.V.; Graeff, C.F.O. Optical behavior of conjugated Pt-containing polymetallaynes exposed to gamma-ray radiation doses. J. Phys. Chem. B 2011, 115, 8047–8053. [Google Scholar] [CrossRef]
- Slimani, K.; Moine, L.; Aymes-Chodur, C.; Laurent, A.; Labarre, D.; Yagoubi, N. Determination of scission, crosslinking and branching parameters of electron beam irradiated methacrylate–acrylamide copolymer. Polym. Degrad. Stab. 2009, 94, 584–590. [Google Scholar] [CrossRef]
- Abdul-Kader, A.; Zaki, M.; El-Badry, B.A. Modified the optical and electrical properties of CR-39 by gamma ray irradiation. J. Radiat. Res. Appl. Sci. 2014, 7, 286–291. [Google Scholar] [CrossRef] [Green Version]
- El-Badry, B.A.; Zaki, M.F.; Abdul-Kader, A.M.; Hegazy, T.M.; Morsy, A.A. Ion bombardment of poly-allyl-diglycol-carbonate (CR-39). Vacuum 2009, 83, 1138–1142. [Google Scholar] [CrossRef]
- Jeong, J.-O.; Park, J.S.; Kim, Y.A.; Yang, S.J.; Jeong, S.I.; Lee, J.Y.; Lim, Y.M. Gamma ray-induced polymerization and cross-linking for optimization of PPy/PVP hydrogel as biomaterial. Polymers 2020, 12, 111. [Google Scholar] [CrossRef] [Green Version]
- Bronze-Uhle, E.S.; Batagin-Neto, A.; Lavarda, F.C.; Graeff, C.F.O. Ionizing radiation induced degradation of poly (2-methoxy-5-(2’-ethyl- hexyloxy) -1,4-phenylene vinylene) in solution. J. Appl. Phys. 2011, 110, 073510. [Google Scholar] [CrossRef] [Green Version]
- Alwan, T.J. Effects of gamma irradiation on the physical properties of PAni.MWCNT/PMMA films. J. Phys. Stud. 2019, 23, 6–11. [Google Scholar] [CrossRef]
- Romanova, E.; Melnikov, A.; Kuzutkina, Y.; Shiryaev, V.; Guizard, S.; Mouskeftaras, A. Nonlinear optical properties of amorphous semiconductors. In Proceedings of the 2012 International Conference on Mathematical Methods in Electromagnetic Theory, MMET, Kharkiv, UKraine, 28–30 August 2012; pp. 521–526. [Google Scholar] [CrossRef]
- Al-Naggar, T.I.; El-Badry, B.A.; All, N.F.A. Study the modifications induced by alphaparticles in cellulose nitrate NTD. Vacuum 2018, 160, 31–36. [Google Scholar] [CrossRef]
- Rammah, Y.S.; Ibrahim, S.E.; Awad, E.M. Electrical and optical properties of Makrofol DE 1-1 polymeric films induced by gamma irradiation. Bull. Natl. Res. Cent. 2019, 43, 1–10. [Google Scholar] [CrossRef]
- Kurt, A. Influence of Alcl3 on the optical properties of new synthesized 3-Armed poly(methyl methacrylate) films. Turk. J. Chem. 2010, 34, 67–79. [Google Scholar] [CrossRef]
Gamma Dose (KGy) | Optical Band-Gap Energy (eV) | Number of Carbon Atoms per Conjugated Length (N) | Refractive Index (n) |
---|---|---|---|
0 | 2.28 | ~ 8.0 | 2.62 |
5 | 2.34 | ~7.8 | 2.60 |
10 | 2.4 | ~7.6 | 2.58 |
15 | 2.45 | ~7.4 | 2.56 |
20 | 2.53 | ~7.0 | 2.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldaghri, O.A.; El-Badry, B.A.; Ali, M.K.M.; Ibnaouf, K.H. Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP. Appl. Sci. 2022, 12, 1606. https://doi.org/10.3390/app12031606
Aldaghri OA, El-Badry BA, Ali MKM, Ibnaouf KH. Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP. Applied Sciences. 2022; 12(3):1606. https://doi.org/10.3390/app12031606
Chicago/Turabian StyleAldaghri, Osamah A., Basma A. El-Badry, Mohammed Khalil M. Ali, and Khalid H. Ibnaouf. 2022. "Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP" Applied Sciences 12, no. 3: 1606. https://doi.org/10.3390/app12031606
APA StyleAldaghri, O. A., El-Badry, B. A., Ali, M. K. M., & Ibnaouf, K. H. (2022). Effect of Gamma Irradiation on the Optical Properties of the Conjugated Copolymer B-co-MP. Applied Sciences, 12(3), 1606. https://doi.org/10.3390/app12031606