Laser Cooling beyond Rate Equations: Approaches from Quantum Thermodynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Cooling Model
2.2. Master Equations for Open Quantum Systems
2.3. Heat Flows from Master Equations
2.4. Master Equations for Laser Cooling
2.5. Exact Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seletskiy, D.V.; Epstein, R.; Sheik-Bahae, M. Laser Cooling in Solids: Advances and Prospects. Rep. Prog. Phys. 2016, 79, 096401. [Google Scholar] [CrossRef] [PubMed]
- Nemova, G.; Kashyap, R. Laser Cooling of Solids. Rep. Prog. Phys. 2010, 73, 086501. [Google Scholar] [CrossRef] [Green Version]
- Epstein, R.; Sheik-Bahae, M. (Eds.) Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Scovil, H.E.D.; Schulz-DuBois, E.O. Three-Level Masers as Heat Engines. Phys. Rev. Lett. 1959, 2, 262–263. [Google Scholar] [CrossRef]
- Geusic, J.E.; Schulz-DuBios, E.O.; Scovil, H.E.D. Quantum Equivalent of the Carnot Cycle. Phys. Rev. 1967, 156, 343–351. [Google Scholar] [CrossRef]
- Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 2010, 105, 130401. [Google Scholar] [CrossRef]
- Creatore, C.; Parker, M.A.; Emmott, S.; Chin, A.W. Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States. Phys. Rev. Lett. 2013, 111, 253601. [Google Scholar] [CrossRef] [Green Version]
- Fruchtman, A.; Gómez-Bombarelli, R.; Lovett, B.W.; Gauger, E.M. Photocell Optimization Using Dark State Protection. Phys. Rev. Lett. 2016, 117, 203603. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, K.E.; Xu, D.; Cao, J. Efficiency at Maximum Power of Laser Quantum Heat Engine Enhanced by Noise-Induced Coherence. Phys. Rev. E 2018, 97, 042120. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, M.; Segal, D. Coherence and Decoherence in Quantum Absorption Refrigerators. Phys. Rev. E 2018, 98, 012117. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.N.; Eastham, P.R. Quantum Control of Excitons for Reversible Heat Transfer. Commun. Phys. 2019, 2, 120. [Google Scholar] [CrossRef] [Green Version]
- Brash, A.J.; Martins, L.M.P.P.; Barth, A.M.; Liu, F.; Quilter, J.H.; Glässl, M.; Axt, V.M.; Ramsay, A.J.; Skolnick, M.S.; Fox, A.M. Dynamic Vibronic Coupling in InGaAs Quantum Dots. J. Opt. Soc. Am. B 2016, 33, C115–C122. [Google Scholar] [CrossRef]
- Eastham, P.R.; Spracklen, A.O.; Keeling, J. Lindblad Theory of Dynamical Decoherence of Quantum-Dot Excitons. Phys. Rev. B 2013, 87, 195306. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, A.J.; Gopal, A.V.; Gauger, E.M.; Nazir, A.; Lovett, B.W.; Fox, A.M.; Skolnick, M.S. Damping of Exciton Rabi Rotations by Acoustic Phonons in Optically Excited InGaAs/GaAs Quantum Dots. Phys. Rev. Lett. 2010, 104, 017402. [Google Scholar] [CrossRef] [Green Version]
- Gauger, E.M.; Wabnig, J. Heat Pumping with Optically Driven Excitons. Phys. Rev. B 2010, 82, 073301. [Google Scholar] [CrossRef] [Green Version]
- Abiuso, P.; Giovannetti, V. Non-Markov Enhancement of Maximum Power for Quantum Thermal Machines. Phys. Rev. A 2019, 99, 052106. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Siddharth, N.; Banerjee, S.; Ghosh, S. Thermodynamics of Non-Markovian Reservoirs and Heat Engines. Phys. Rev. E 2018, 97, 062108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylicka, B.; Tukiainen, M.; Chruściński, D.; Piilo, J.; Maniscalco, S. Thermodynamic Power of Non-Markovianity. Sci. Rep. 2016, 6, 27989. [Google Scholar] [CrossRef] [Green Version]
- Correa, L.A.; Palao, J.P.; Alonso, D.; Adesso, G. Quantum-Enhanced Absorption Refrigerators. Sci. Rep. 2015, 4, 3949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, A.; McCutcheon, D.P.S. Modelling Exciton–Phonon Interactions in Optically Driven Quantum Dots. J. Phys. Condens. Matter 2016, 28, 103002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrachtrup, J.; Jelezko, F. Processing Quantum Information in Diamond. J. Phys. Condens. Matter 2006, 18, S807–S824. [Google Scholar] [CrossRef]
- Norambuena, A.; Reyes, S.A.; Mejía-Lopéz, J.; Gali, A.; Maze, J.R. Microscopic Modeling of the Effect of Phonons on the Optical Properties of Solid-State Emitters. Phys. Rev. B 2016, 94, 134305. [Google Scholar] [CrossRef] [Green Version]
- Basilewitsch, D.; Cosco, F.; Lo Gullo, N.; Möttönen, M.; Ala-Nissilä, T.; Koch, C.P.; Maniscalco, S. Reservoir Engineering Using Quantum Optimal Control for Qubit Reset. New J. Phys. 2019, 21, 093054. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium Fluctuations, Fluctuation Theorems, and Counting Statistics in Quantum Systems. Rev. Mod. Phys. 2009, 81, 1665–1702. [Google Scholar] [CrossRef] [Green Version]
- Eastham, P.R.; Kirton, P.; Cammack, H.M.; Lovett, B.W.; Keeling, J. Bath-Induced Coherence and the Secular Approximation. Phys. Rev. A 2016, 94, 012110. [Google Scholar] [CrossRef] [Green Version]
- Hofer, P.P.; Perarnau-Llobet, M.; Miranda, L.D.M.; Haack, G.; Silva, R.; Brask, J.B.; Brunner, N. Markovian Master Equations for Quantum Thermal Machines: Local versus Global Approach. New J. Phys. 2017, 19, 123037. [Google Scholar] [CrossRef]
- Hartmann, R.; Strunz, W.T. Accuracy Assessment of Perturbative Master Equations: Embracing Nonpositivity. Phys. Rev. A 2020, 101, 012103. [Google Scholar] [CrossRef] [Green Version]
- Purkayastha, A.; Dhar, A.; Kulkarni, M. Out-of-Equilibrium Open Quantum Systems: A Comparison of Approximate Quantum Master Equation Approaches with Exact Results. Phys. Rev. A 2016, 93, 062114. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Segal, D. Coherences and the Thermodynamic Uncertainty Relation: Insights from Quantum Absorption Refrigerators. Phys. Rev. E 2021, 103, 032138. [Google Scholar] [CrossRef]
- Jeske, J.; Ing, D.J.; Plenio, M.B.; Huelga, S.F.; Cole, J.H. Bloch-Redfield Equations for Modeling Light-Harvesting Complexes. J. Chem. Phys. 2015, 142, 064104. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, M.; Agarwalla, B.K.; Segal, D. Path-Integral Methodology and Simulations of Quantum Thermal Transport: Full Counting Statistics Approach. J. Chem. Phys. 2019, 150, 084111. [Google Scholar] [CrossRef] [Green Version]
- Boudjada, N.; Segal, D. From Dissipative Dynamics to Studies of Heat Transfer at the Nanoscale: Analysis of the Spin-Boson Model. J. Phys. Chem. A 2014, 118, 11323–11336. [Google Scholar] [CrossRef] [PubMed]
- Dümcke, R.; Spohn, H. The Proper Form of the Generator in the Weak Coupling Limit. Z. Phys. B 1979, 34, 419–422. [Google Scholar] [CrossRef]
- González, J.O.; Correa, L.A.; Nocerino, G.; Palao, J.P.; Alonso, D.; Adesso, G. Testing the Validity of the ‘Local’ and ‘Global’ GKLS Master Equations on an Exactly Solvable Model. Open Syst. Inf. Dyn. 2017, 24, 1740010. [Google Scholar] [CrossRef]
- Friedman, H.M.; Agarwalla, B.K.; Segal, D. Quantum Energy Exchange and Refrigeration: A Full-Counting Statistics Approach. New J. Phys. 2018, 20, 083026. [Google Scholar] [CrossRef]
- Trushechkin, A.S.; Merkli, M.; Cresser, J.D.; Anders, J. Open Quantum System Dynamics and the Mean Force Gibbs State. arXiv 2021, arXiv:2110.01671. [Google Scholar]
- Allen, L.; Eberly, J.H. Optical Resonance and Two-Level Atoms; Dover Publications: New York, NY, USA, 1987. [Google Scholar]
- Wangsness, R.K.; Bloch, F. The Dynamical Theory of Nuclear Induction. Phys. Rev. 1953, 89, 728–739. [Google Scholar] [CrossRef]
- Lindblad, G. On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely Positive Dynamical Semigroups of N-level Systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Redfield, A.G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–31. [Google Scholar] [CrossRef]
- Bloch, F. Generalized Theory of Relaxation. Phys. Rev. 1957, 105, 1206–1222. [Google Scholar] [CrossRef]
- Silaev, M.; Heikkilä, T.T.; Virtanen, P. Lindblad-Equation Approach for the Full Counting Statistics of Work and Heat in Driven Quantum Systems. Phys. Rev. E 2014, 90, 022103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparinetti, S.; Solinas, P.; Braggio, A.; Sassetti, M. Heat-Exchange Statistics in Driven Open Quantum Systems. New J. Phys. 2014, 16, 115001. [Google Scholar] [CrossRef]
- Popovic, M.; Mitchison, M.T.; Strathearn, A.; Lovett, B.W.; Goold, J.; Eastham, P.R. Quantum Heat Statistics with Time-Evolving Matrix Product Operators. PRX Quantum 2021, 2, 020338. [Google Scholar] [CrossRef]
- Strathearn, A.; Kirton, P.; Kilda, D.; Keeling, J.; Lovett, B.W. Efficient Non-Markovian Quantum Dynamics Using Time-Evolving Matrix Product Operators. Nat. Commun. 2018, 9, 3322. [Google Scholar] [CrossRef]
- Fux, G.E.; Butler, E.P.; Eastham, P.R.; Lovett, B.W.; Keeling, J. Efficient Exploration of Hamiltonian Parameter Space for Optimal Control of Non-Markovian Open Quantum Systems. Phys. Rev. Lett. 2021, 126, 200401. [Google Scholar] [CrossRef] [PubMed]
- Makri, N.; Makarov, D.E. Tensor Propagator for Iterative Quantum Time Evolution of Reduced Density Matrices. II. Numerical Methodology. J. Chem. Phys. 1995, 102, 4611–4618. [Google Scholar] [CrossRef]
- Gribben, D.; Rouse, D.M.; Iles-Smith, J.; Strathearn, A.; Maguire, H.; Kirton, P.; Nazir, A.; Gauger, E.M.; Lovett, B.W. Exact Dynamics of Non-Additive Environments in Non-Markovian Open Quantum Systems. arXiv 2021, arXiv:2109.08442. [Google Scholar]
- Tscherbul, T.V.; Brumer, P. Long-Lived Quasistationary Coherences in a V-type System Driven by Incoherent Light. Phys. Rev. Lett. 2014, 113, 113601. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, C.N.; Toledo Tude, L.; Eastham, P.R. Laser Cooling beyond Rate Equations: Approaches from Quantum Thermodynamics. Appl. Sci. 2022, 12, 1620. https://doi.org/10.3390/app12031620
Murphy CN, Toledo Tude L, Eastham PR. Laser Cooling beyond Rate Equations: Approaches from Quantum Thermodynamics. Applied Sciences. 2022; 12(3):1620. https://doi.org/10.3390/app12031620
Chicago/Turabian StyleMurphy, Conor N., Luísa Toledo Tude, and Paul R. Eastham. 2022. "Laser Cooling beyond Rate Equations: Approaches from Quantum Thermodynamics" Applied Sciences 12, no. 3: 1620. https://doi.org/10.3390/app12031620
APA StyleMurphy, C. N., Toledo Tude, L., & Eastham, P. R. (2022). Laser Cooling beyond Rate Equations: Approaches from Quantum Thermodynamics. Applied Sciences, 12(3), 1620. https://doi.org/10.3390/app12031620