Enhancement-Mode Heterojunction Vertical β-Ga2O3 MOSFET with a P-Type Oxide Current-Blocking Layer
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Basic Characteristics
3.2. Analysis of Energy Band Structure and Characteristics
3.3. Influence of Doping Concentration and Thickness of p-SnO CBL
3.4. Other p-Type Metal Oxide CBL Ga2O3 Heterojunction MOSFETs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onuma, T.; Saito, S.; Sasaki, K.; Masui, T.; Yamaguchi, T.; Honda, T.; Higashiwaki, M. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy. Jpn. J. Appl. Phys. 2015, 54, 112601. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Jessen, G.H. Guest Editorial: The dawn of gallium oxide microelectronics. Appl. Phys. Lett. 2018, 112, 060401. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Orlando, R.; Blanco, M.A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 2006, 74, 195123. [Google Scholar] [CrossRef] [Green Version]
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907. [Google Scholar] [CrossRef] [Green Version]
- Kyrtsos, A.; Matsubara, M.; Bellotti, E. On the feasibility of p-type Ga2O3. Appl. Phys. Lett. 2018, 112, 032108. [Google Scholar] [CrossRef]
- Lyons, J.L. A survey of acceptor dopants for β-Ga2O3. Semicond. Sci. Technol. 2018, 33, 05LT02. [Google Scholar] [CrossRef]
- Peelaers, H.; Lyons, J.L.; Varley, J.B.; van de Walle, C.G. Deep acceptors and their diffusion in Ga2O3. APL Mater. 2019, 7, 022519. [Google Scholar] [CrossRef] [Green Version]
- Tomoya, G.; Kumagai, Y.; Oba, F. First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs. Phys. Rev. Mater. 2019, 3, 044603. [Google Scholar]
- Yamaguchi, K. First principles study on electronic structure of beta- Ga2O3. Solid State Commun. 2004, 131, 12. [Google Scholar] [CrossRef]
- Hartwin, P.; de Walle, V.; Chris, G. Brillouin zone and band structure of β-Ga2O3. Phys. Status Solidi B Basic Res. 2015, 252, 4. [Google Scholar]
- Shigenobu, Y.; Hisashi, M.; Akito, K.; Ken, G.; Yoshinao, K.; Masataka, H.; Yoji, M.; Hoi, W.M. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer. Appl. Phys. Express 2018, 11, 064102. [Google Scholar]
- Wong, M.H.; Goto, K.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Current Aperture Vertical β-Ga2O3 MOSFETs Fabricated by N- and Si-Ion Implantation Doping. Electron. Device Lett. 2018, 40, 431. [Google Scholar] [CrossRef]
- Hu, Z.; Nomoto, K.; Li, W.; Jinno, R.; Nakamura, T.; Jena, D.; Xing, H. 1.6 kV Vertical Ga2O3 FinFETs with Source-Connected Field Plates and Normally-Off Operation. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019. [Google Scholar]
- Li, W.; Nomoto, K.; Hu, Z.; Nakamura, T.; Jena, D.; Xing, H.G. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM) IEEE, San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Lu, X.; Zhou, X.; Jiang, H.; Ng, K.W.; Chen, Z.; Pei, Y.; Lau, K.M.; Wang, G. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2. IEEE Electron Device Lett. 2020, 41, 449. [Google Scholar] [CrossRef]
- Gong, H.H.; Chen, X.H.; Xu, Y.; Ren, F.F.; Ye, J.D. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode. Appl. Phys. Lett. 2020, 117, 022104. [Google Scholar] [CrossRef]
- Sahadeb, G.; Madhusmita, B.; Rajiv, K.; Singh, S.D.; Tapas, G. Investigations on band commutativity at all oxide p-type NiO/n-type Ga2O3 heterojunction using photoelectron spectroscopy. Appl. Phys. Lett. 2019, 115, 251603. [Google Scholar]
- Wang, C.; Gong, H.; Lei, W.; Cai, Y.; Hu, Z.; Xu, S.; Liu, Z.; Feng, Q.; Zhou, H.; Ye, J.; et al. Demonstration of the p-NiOx/n-Ga2O3 Heterojunction Gate FETs and Diodes with BV2/Ron, sp Figures of Merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett. 2021, 42, 485. [Google Scholar] [CrossRef]
- Sasaki, K.; Wakimoto, D.; Thieu, Q.T.; Koishikawa, Y.; Kuramata, A.; Higashiwaki, M.; Yamakoshi, S. Demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. In Proceedings of the 2017 75th Device Research Conference (DRC) IEEE, South Bend, IN, USA, 25–28 June 2017. [Google Scholar]
- Li, X.; Liang, L.; Cao, H.; Qin, R.; Zhang, H.; Gao, J.; Zhuge, F. Determination of some basic physical parameters of SnO based on SnO/Si pn heterojunctions. Appl. Phys. Lett. 2015, 106, 132102. [Google Scholar] [CrossRef]
- Yoichi, O.; Hidenori, H.; Kenji, N.; Hiroshi, Y.; Toshio, K.; Masahiro, H.; Hideo, H. P-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 2008, 93, 032113. [Google Scholar]
- Tsay, C.Y.; Lin, M.C.; Chang, F.Y.; Wang, Y.W. Fabrication and Characterization of p-type SnO Thin-Film Transistors by Reactive DC Magnetron Sputtering. In Proceedings of the 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 2–5 July 2019. [Google Scholar]
- Fortunato, E.; Figueiredo, V.; Hwang, C.S.; Barros, R.; Martins, R.; Barquinha, P.; Park, S.H.K. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Appl. Phys. Lett. 2010, 97, 052105. [Google Scholar] [CrossRef]
- Lee, H.N.; Kim, H.J.; Kim, C.K. P-Channel Tin Monoxide Thin Film Transistor Fabricated by Vacuum Thermal Evaporation. Jpn. J. Appl. Phys. 2010, 49, 020202. [Google Scholar] [CrossRef]
- Wong, M.H.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Enhancement-Mode β-Ga2O3 Current Aperture Vertical MOSFETs with N-Ion-Implanted Blocker. IEEE Electron Device Lett. 2019, 41, 296. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Wong, M.H.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 MOSFETs. In Proceedings of the Device Research Conference IEEE, Notre Dame, IN, USA, 23–26 June 2013. [Google Scholar]
- Li, L.; Wang, W.; He, L.; Zhang, J.; Wu, Z.; Zhang, B.; Liu, Y. Synthesis and characterization of p-type NiO films suitable for normally-off AlGaN/GaN HFETs application. Mater. Sci. Semicond. Proc. 2017, 67, 141. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Xie, T.; Wang, X.Z.; Liu, X.K.; Ao, J.P. Threshold voltage tuning in AlGaN/GaN HFETs with p-type Cu2O gate synthesized by magnetron reactive sputtering. Appl. Surf. Sci. 2010, 437, 98. [Google Scholar] [CrossRef]
- Marnadu, R.; Chandrasekaran, J.; Maruthamuthu, S.; Vivek, P.; Balasubramani, V.; Balraju, P. Jet Nebulizer Sprayed WO3-Nanoplate Arrays for High-Photoresponsivity Based Metal–Insulator–Semiconductor Structured Schottky Barrier Diodes. J. Inorg. Organomet. Polym. Mater. 2020, 30, 731. [Google Scholar] [CrossRef]
- Erre, R.; Damme, H.V.; Fripiat, J.J. Reaction of molecular hydrogen with the 100 face of MoO3: I. Kinetics in the low pressure range (10−8−10−6 Torr) in the presence of platinum particles. Appl. Surf. Sci. 1983, 127, 48. [Google Scholar] [CrossRef]
Symbol | Definition | Value |
---|---|---|
LGS | distance between the gate and source | 5 um |
Lsrc | source contact length | 2 um |
Lgo | overlapping length of the CBL and gate | 7.5 um |
Lnh | length of the highly doped channel region | 10 um |
Lnl | length of the lowly doped channel region | 25 um |
Lap | current aperture width | 10 um |
TAl2O3 | Al2O3 thickness | 0.05 um |
Tch | channel thickness | 0.1 um |
TCBL | current barrier layer thickness | 0.8 um |
Tdrift | drift layer thickness | 8.2 um |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Xie, X.; Zhang, Z.; Dong, P.; Li, Z.; Chen, D.; Zhu, W.; Zhao, S.; Feng, Q.; Zhang, J.; et al. Enhancement-Mode Heterojunction Vertical β-Ga2O3 MOSFET with a P-Type Oxide Current-Blocking Layer. Appl. Sci. 2022, 12, 1757. https://doi.org/10.3390/app12031757
Huang Y, Xie X, Zhang Z, Dong P, Li Z, Chen D, Zhu W, Zhao S, Feng Q, Zhang J, et al. Enhancement-Mode Heterojunction Vertical β-Ga2O3 MOSFET with a P-Type Oxide Current-Blocking Layer. Applied Sciences. 2022; 12(3):1757. https://doi.org/10.3390/app12031757
Chicago/Turabian StyleHuang, Yuwen, Xiaoping Xie, Zeyulin Zhang, Peng Dong, Zhe Li, Dazheng Chen, Weidong Zhu, Shenglei Zhao, Qian Feng, Jincheng Zhang, and et al. 2022. "Enhancement-Mode Heterojunction Vertical β-Ga2O3 MOSFET with a P-Type Oxide Current-Blocking Layer" Applied Sciences 12, no. 3: 1757. https://doi.org/10.3390/app12031757
APA StyleHuang, Y., Xie, X., Zhang, Z., Dong, P., Li, Z., Chen, D., Zhu, W., Zhao, S., Feng, Q., Zhang, J., Zhang, C., & Hao, Y. (2022). Enhancement-Mode Heterojunction Vertical β-Ga2O3 MOSFET with a P-Type Oxide Current-Blocking Layer. Applied Sciences, 12(3), 1757. https://doi.org/10.3390/app12031757