Mapping of Hydrothermal Alteration Zones in the Kelâat M’Gouna Region Using Airborne Gamma-Ray Spectrometry and Remote Sensing Data: Mining Implications (Eastern Anti-Atlas, Morocco)
Abstract
:1. Introduction
2. Material and Methods
2.1. Geological Context of the Study Area
2.2. Structural and Tectonic Context of the Study Area
- The first family-oriented NE-SW is the most dominant and with plurikilometer lengths. The most important faults of this family are the Sidi Flah fault and the faults bordering the Tagmout graben (Figure 2). The Sidi Flah fault shows a sinister set related to its reactivation under the effects of the Hercynian orogeny [31]. The Tagmout graben corresponds to the western extension of the great graben located in the heart of the Saghro massif [48,49].
- The second family is oriented NNW-SSE and shows a dexterous set in coherence with the antithetic movement [31].
- The third family is oriented NNE-SW and corresponds to dolerite and rhyolite dikes that were emplaced in the echelon distension fractures of the synthetic Riedel faults playing in shear in the same stress field around 564 Ma [50].
2.3. Ore Deposits of the Study Area
2.4. Geophysical and Remote Sensing Data
2.4.1. Radiometric Data
2.4.2. ASTER Satellite Imagery
2.4.3. Fuzzy Logic Modelling of Radiometric and ASTER Satellite Imagery
3. Results
3.1. Mapping of Hydrothermal Alteration Zones
3.1.1. Contribution of the Radiometry
3.1.2. Contribution of the K/eTh Ratio
3.1.3. Contribution of Aster Data
3.1.4. Generating Mineral Prospectivity Maps
4. Discussions
- -
- Area 1 is mainly associated with alteration zones in the Ouarzazate Group rhyolitic formations. This elongated area straddles a system of NE-SW and NNE-SSW faults. These faults probably served as flow paths for hydrothermal mineralization. The documented mineral occurrences also show a close spatial relationship with the fault systems in the study area, particularly in the Tagmout copper deposit.
- -
- Area 2 and 3 are located at the contact zone between the pink granite of Isk n’Alla and the volcanic and rhyodacite formations of the Lower Ouarzazate Group. These formations are crossed by a swarm of rhyolitic dikes of variable direction of the Upper Ouarzazate Group. At outcrop, both zones host some Cu, Mn and Fe showings.
- -
- Area 4 stakes the ENE-WSW Sidi Flah fault zone, which extends over several kilometers. From a mining point of view, several showings, including Au, Cu, Pb and Mn, have been reported along and near this fault. This type of fault may favor the circulation of mineralizing hydrothermal fluids from a deep source that may enrich the host rocks and tectonic structures [22,23].
- -
- Area 5 coincides with hydrothermal alteration associated with the Wawitcht granite and volcanic rocks of the Lower Ouarzazate Group.
- -
- Area 6 is associated with the Cryogenian basement formations or its Ediacaran cover. Minerally, it is a prospective area as it hosts three gold prospects. According to Benzian et al., 2008 [31]; Tuduri et al., 2018 [32], most gold mineralization in the study area is restricted to Precambrian formations such as Cryogenian basement turbid volcano-sedimentary and Ediacaran granites. This indicates that gold prospecting in the areas adjacent to the three indicated prospects is likely to be most successful in the altered zones recognized in basement rocks and its Ediacaran cover.
- -
- Area 7 concerns an alteration zone associated with the Azlag granite and the volcano-sedimentary cover of the lower Ouarzazate group. Due to Miocene deposits that may hide other mineral occurrences, only one copper showing has been reported. Consequently, a geophysical study will be necessary to follow the rooting of these surface anomalies, which would be related to tectonic structures at depth.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Abdelnasser, A.; Kumral, M.; Zoheir, B.; Karaman, M.; Weihed, P. REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt. J. Afr. Earth Sci. 2018, 145, 317–330. [Google Scholar] [CrossRef]
- Gabr, S.S.; Hassan, S.M.; Sadek, M.F. Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol. Rev. 2015, 71, 1–13. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 2011, 7, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 2018, 33, 1281–1306. [Google Scholar] [CrossRef]
- Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Econ. Geol. 2003, 98, 1019–1027. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Sekandari, M.; Masoumi, I.; Pour, A.B.; Muslim, A.M.; Hossain, M.S.; Misra, A. ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization. Geocarto Int. 2020, 1–31. [Google Scholar] [CrossRef]
- Sheikhrahimi, A.; Pour, A.B.; Pradhan, B.; Zoheir, B. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv. Sp. Res. 2019, 63, 3315–3332. [Google Scholar] [CrossRef]
- Zhang, X.; Pazner, M.; Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J. Photogramm. Remote Sens. 2007, 62, 271–282. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.-Y.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Jébrak, M.; Marcoux, E.; Laithier, M. Géologie des Ressources Minérales; Ministère des Ressources Naturelles et de la Faune: Quebec City, QC, Canada, 2008; ISBN 2551237378.
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Abrams, M.; Yamaguchi, Y. Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sens. 2019, 11, 1394. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, Y. Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. In Proceedings of the Thermosense XXIV, Orlando, FL, USA, 1–5 April 2002; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4710, pp. 191–202. [Google Scholar]
- Safari, M.; Maghsoudi, A.; Pour, A.B. Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: A case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto Int. 2018, 33, 1186–1201. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Boualoul, M.; Barreca, G.; Allaoui, A.; Bouikbane, H.; Lanza, S.; Crupi, A.; Randazzo, G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources 2020, 9, 51. [Google Scholar] [CrossRef]
- Et-Tayea, Y.; Rachid, A.; Attou, A.; Nasri, H.; Mamouch, Y.; El Khazanti, F.; El Azhari, H.; El Haddar, A.; Aziz, A. A new bentonite deposit prospected in the Cap des Trois Fourches area (north-eastern Rif, Morocco) using spectrometry by satellite imagery coupled with mineralogical, chemical, and microstructural investigations. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- El Azzab, D.; Ghfir, Y.; Miftah, A. Geological interpretation of the rifian foreland gravity anomalies and 3D modeling of their Hercynian granites (Northeastern Morocco). J. Afr. Earth Sci. 2019, 150, 584–594. [Google Scholar] [CrossRef]
- Elkhateeb, S.O.; Abdellatif, M.A.G. Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using Airborne Magnetic and Radiometric data. NRIAG J. Astron. Geophys. 2018, 7, 361–376. [Google Scholar] [CrossRef] [Green Version]
- Miftah, A.; El Azzab, D.; Attou, A.; Manar, A.; Rachid, A.; Ramhy, H. Geochemical mapping of radioactive elements using helicopter-borne gamma-ray spectrometry (Tiouit, Eastern Anti-Atlas, Morocco): Or occurrence and environmental impact. J. Afr. Earth Sci. 2018, 139, 392–402. [Google Scholar] [CrossRef]
- Miftah, A.; El Azzab, D.; Attou, A.; Rachid, A.; Ouchchen, M.; Soulaimani, A.; Soulaimani, S.; Manar, A. Combined analysis of helicopter-borne magnetic and stream sediment geochemical data around an ancient Tiouit gold mine (Eastern Anti-Atlas, Morocco): Geological and mining interpretations. J. Afr. Earth Sci. 2021, 175, 104093. [Google Scholar] [CrossRef]
- Ouchchen, M.; Boutaleb, S.; El Azzab, D.; Abioui, M.; Mickus, K.L.; Miftah, A.; Echogdali, F.Z.; Dadi, B. Structural interpretation of the Igherm region (Western Anti Atlas, Morocco) from an aeromagnetic analysis: Implications for copper exploration. J. Afr. Earth Sci. 2021, 176, 104140. [Google Scholar] [CrossRef]
- Ranjbar, H.; Masoumi, F.; Carranza, E.J.M. Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. Int. J. Remote Sens. 2011, 32, 3309–3327. [Google Scholar] [CrossRef]
- Abd El Nabi, S.H. Role of γ-ray spectrometry in detecting potassic alteration associated with Um Ba’anib granitic gneiss and metasediments, G. Meatiq area, Central Eastern Desert, Egypt. Arab. J. Geosci. 2013, 6, 1249–1261. [Google Scholar] [CrossRef]
- Elawadi, E.; Ammar, A.; Elsirafy, A. Mapping surface geology using airborne gamma-ray spectrometric survey data-A case study. In Proceedings of the 7th SEGJ International Symposium, Sendai, Japan, 24–26 November 2004. [Google Scholar]
- Grasty, R.L.; Shives, R.B.K. Applications of gamma ray spectrometry to mineral exploration and geological mapping. In Proceedings of the Workshop Presented at Exploration, Houston, TX, USA, 4–5 October 1997; Volume 97. [Google Scholar]
- Maden, N.; Akaryalı, E. Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern Pontides, NE Türkiye). J. Appl. Geophys. 2015, 122, 74–85. [Google Scholar] [CrossRef]
- Shives, R.B.K.; Charbonneau, B.W.; Ford, K.L. The detection of potassic alteration by gamma-ray spectrometry—recognition of alteration related to mineralization. Geophysics 2000, 65, 2001–2011. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.A.S.; Elkhodary, S.T. Utilization of airborne gamma ray spectrometric data for geological mapping, radioactive mineral exploration and environmental monitoring of southeastern Aswan city, South Eastern Desert, Egypt. Geophys. J. Int. 2013, 195, 1689–1700. [Google Scholar] [CrossRef] [Green Version]
- Benziane, F.; Yazidi, A.; Saadane, A.; Yazidi, M.; EL Fahssi, A.; Stone, B.D.; Walsh, G.; Burton, W.C.; Aleinikoff, J.N.; Ejjaouani, H.; et al. Carte géologique du Maroc au 1/50 000, feuille KELÂAT M’GOUNA–Notice explicative. Notes Mémoires Serv. Géologique Maroc 2008, 468, 136. [Google Scholar]
- Tuduri, J.; Chauvet, A.; Barbanson, L.; Bourdier, J.-L.; Labriki, M.; Ennaciri, A.; Badra, L.; Dubois, M.; Ennaciri-Leloix, C.; Sizaret, S. The jbel saghro au (–ag, cu) and ag–hg metallogenetic province: Product of a long-lived ediacaran tectono-magmatic evolution in the moroccan anti-atlas. Minerals 2018, 8, 592. [Google Scholar] [CrossRef] [Green Version]
- Thiéblemont, D.; Chêne, F.; Liégeois, J.P.; Ouabadi, A.; Le Gall, B.; Maury, R.C.; Jalludin, M.; Ouattara Gbélé, C.; Tchaméni, R.; Fernandez-Alonso, M. Geological Map of Africa at 1: 10 Million Scale. In Proceedings of the 35th International Geology Congress, Cape Town, South Africa, 28 August–2 September 2016. [Google Scholar]
- Gasquet, D.; Ennih, N.; Liégeois, J.-P.; Soulaimani, A.; Michard, A. The pan-african belt. In Continental Evolution: The Geology of Morocco; Springer: Berlin/Heidelberg, Germany, 2008; pp. 33–64. [Google Scholar]
- Thomas, R.J.; Chevallier, L.P.; Gresse, P.G.; Harmer, R.E.; Eglington, B.M.; Armstrong, R.A.; De Beer, C.H.; Martini, J.E.J.; De Kock, G.S.; Macey, P.H. Precambrian evolution of the Sirwa window, Anti-Atlas orogen, Morocco. Precambrian Res. 2002, 118, 1–57. [Google Scholar] [CrossRef]
- Hindermeyer, J. Le precambrien-III du sarho. Comptes Rendus Hebd. Séances L’Acad. Sci. 1953, 237, 1024–1026. [Google Scholar]
- Ouguir, H.; Macaudiere, J.; Dagallier, G.; Qadrouci, A.; Leistel, J. Cadre structural du gite Ag-Hg d’Imiter (Anti Atlas, Maroc); implication metallogenique. Bull. Soc. Geol. Fr. 1994, 165, 233–248. [Google Scholar]
- Leblanc, M. Ophiolites Précambriennes dans le PII de l’Anti-Atlas Central (Maroc). Ph.D. Thesis, University of Paris VI, Paris, France, 1975. [Google Scholar]
- El Baghdadi, M.; El Boukhari, A.; Jouider, A.; Benyoucef, A.; Nadem, S. Calc-alkaline arc I-type granitoid associated with S-type granite in the Pan-African belt of eastern Anti-Atlas (Saghro and Ougnat, South Morocco). Gondwana Res. 2003, 6, 557–572. [Google Scholar] [CrossRef]
- Baidada, B.; Cousens, B.; Alansari, A.; Soulaimani, A.; Barbey, P.; Ilmen, S.; Ikenne, M. Geochemistry and Sm–Nd isotopic composition of the Imiter Pan-African granitoids (Saghro massif, eastern Anti-Atlas, Morocco): Geotectonic implications. J. Afr. Earth Sci. 2017, 127, 99–112. [Google Scholar] [CrossRef]
- Tuduri, J. Processus de Formation et Relations Spatio-Temporelles des Minéralisations à or et Argent en Contexte Volcanique Précambrien (Jbel Saghro, Anti-Atlas, Maroc). Implications sur les Relations Déformation-Magmatisme-Volcanisme-Hydrothermalisme. Ph.D. Thesis, University of Orléans, Orléans, France, 2005. [Google Scholar]
- Walsh, G.J.; Benziane, F.; Aleinikoff, J.N.; Harrison, R.W.; Yazidi, A.; Burton, W.C.; Quick, J.E.; Saadane, A. Neoproterozoic tectonic evolution of the jebel Saghro and Bou Azzer—El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Res. 2012, 216, 23–62. [Google Scholar] [CrossRef]
- Bajja, A.; Greiling, R.O.; Rocci, G. Pan-African andesites and dacites in the eastern Anti-Atlas: Syn-subduction or post-collisional? Z. Dtsch. Geol. Ges. 1998, 1–12. [Google Scholar] [CrossRef]
- Clauer, N. Géochimie Isotopique du Strontium des Milieux Sédimentaires. Application à la Géochronologie de la Couverture du Craton Ouest-Africain; Persée-Portail des Revues Scientifiques en SHS: Aubervilliers, France, 1976; Volume 45. [Google Scholar]
- Ezzouhairi, H. Etude Pétrographique, Géochimique et Structurale des Formations Plutoniques du Précambrien II de la Boutonnière de Bouskour (Sarhro Occidental Anti-Atlas, Maroc). Ph.D. Thesis, University of Marrakech, Marrakech, Morocco, 1989. [Google Scholar]
- Nerci, K. La Boutonnière Protérozoique de Sidi Flah (Saghro, Anti-Atlas, Maroc): Contribution à L’étude de ses Minéralisations à Pb, Zn, Cu, Ag et de Cadre Géologique. Ph.D. Thesis, University of Rabat, Rabat, Morocco, 1988; 222p. [Google Scholar]
- Rjimati, E.C.; Derre, C.; Lecolle, M.; Lillie, F.; Nerci, K. Caractéristiques de la tectonique pan-africaine dans le Jbel Saghro (Anti-Atlas), Notes et mémoires du Service géologique. 1992; 387–394.
- Elsass, P. Analyse Tectonique du Graben de Tagmout-Tine Ouayour (Jbel Sarhro, Maroc). Notes Mem. 1977, 268, 23. [Google Scholar]
- Hawkins, M.P.; Beddoe-Stephens, B.; Gillespie, M.R.; Loughlin, S.; Barron, H.F.; Barnes, R.P.; Powell, J.H.; Waters, C.N.; Williams, M. Carte géologique du Maroc au 1/50 000, feuille Tiwit, Notes et Mémoires du Service Géologique du Maroc. 2001; Volume 404.
- Henares Romero, J.; López Casado, C.; Sanz de Galdeano, C.; Delgado, J.; Peláez Montilla, J.A. Stress fields in the Iberian-Maghrebi region. J. Seismol. 2003, 7, 65–78. [Google Scholar] [CrossRef]
- Derré, C.; Lécolle, M. Altérations hydrothermales dans le Protérozoïque supérieur du Saghro (Anti-Atlas oriental). Relations avec les minéralisations, Chronique de la Recherche Miniére. 1999; 39–63.
- Dickson, B.L.; Scott, K.M. Interpretation of aerial gamma-ray surveys-adding the geochemical factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200. [Google Scholar]
- Erdi-Krausz, G.; Matolin, M.; Minty, B.; Nicolet, J.P.; Reford, W.S.; Schetselaar, E.M. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data: Also as Open Access e-Book; International Atomic Energy Agency (IAEA): Vienna, Austria, 2003; ISBN 9201083033. [Google Scholar]
- Minty, B.R.S. Fundamentals of airborne gamma-ray spectrometry. AGSO J. Aust. Geol. Geophys. 1997, 17, 39–50. [Google Scholar]
- Wilford, J. Airborne gamma-ray spectrometry. Geophys. Remote Sens. Methods Regloith Explor. 2002, 46–52. [Google Scholar]
- El-Sadek, M.A. Radiospectrometric and magnetic signatures of a gold mine in Egypt. J. Appl. Geophys. 2009, 67, 34–43. [Google Scholar] [CrossRef]
- Ghoneim, S.M.; Abd El Nabi, S.H.; Yehia, M.A.; Salem, S.M. Using air-borne gamma ray spectrometry and remote sensing data for detecting alteration zones around Wadi Saqia area, Central Eastern Desert, Egypt. J. Afr. Earth Sci. 2021, 178, 104181. [Google Scholar] [CrossRef]
- Ribeiro, V.B.; Mantovani, M.S.M. Gamma spectrometric and magnetic interpretation of Cabaçal copper deposit in Mato Grosso (Brazil): Implications for hydrothermal fluids remobilization. J. Appl. Geophys. 2016, 135, 223–231. [Google Scholar] [CrossRef]
- Adler-Golden, S.; Berk, A.; Bernstein, L.S.; Richtsmeier, S.; Acharya, P.K.; Matthew, M.W.; Anderson, G.P.; Allred, C.L.; Jeong, L.S.; Chetwynd, J.H. FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations. In Proceedings of the 7th Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998; JPL Publication: La Cañada Flintridge, CA, USA, 1998; Volume 97, pp. 9–14. [Google Scholar]
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, J.W.; Gardner, J.A. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. In Proceedings of the Imaging Spectrometry V, Denver, CO, USA, 18–23 July 1999; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3753, pp. 61–69. [Google Scholar]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.L. Status of atmospheric correction using a MODTRAN4-based algorithm. In Proceedings of the Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Orlando, FL, USA, 24–28 April 2000; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 4049, pp. 199–207. [Google Scholar]
- Crosta, A.P.; De Souza Filho, C.R.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Mia, B.; Fujimitsu, Y. Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. J. Earth Syst. Sci. 2012, 121, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, Y. Rock type mapping with indices defined for multispectral thermal infrared ASTER data: Case studies. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, Crete, Greece, 23–27 September 2002; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 4886, pp. 123–132. [Google Scholar]
- Ninomiya, Y. A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; Volume 3, pp. 1552–1554. [Google Scholar]
- Zhang, N.; Zhou, K. Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. J. Intell. Fuzzy Syst. 2015, 29, 2639–2651. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Carranza, E.J.M.; Hale, M. Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Nat. Resour. Res. 2001, 10, 125–136. [Google Scholar] [CrossRef]
- Ghanbari, Y.; Hezarkhani, A.; Ataei, M.; Pazand, K. Mineral potential mapping with fuzzy models in the Kerman–Kashmar Tectonic Zone, Central Iran. Appl. Geomat. 2012, 4, 173–186. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Du, X. Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. J. Afr. Earth Sci. 2017, 128, 84–96. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logic, neural networks, and soft computing. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh; World Scientific: Singapore, 1996; pp. 775–782. [Google Scholar]
- Zimmermann, H.-J.; Zysno, P. Latent connectives in human decision making. Fuzzy Sets Syst. 1980, 4, 37–51. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choe, K.-U.; Ri, R.-K. Application of fuzzy logic and geometric average: A Cu sulfide deposits potential mapping case study from Kapsan Basin, DPR Korea. Ore Geol. Rev. 2019, 107, 239–247. [Google Scholar] [CrossRef]
- Galbraith, J.H.; Saunders, D.F. Rock classification by characteristics of aerial gamma-ray measurements. J. Geochem. Explor. 1983, 18, 49–73. [Google Scholar] [CrossRef]
- Fall, M.; Baratoux, D.; Ndiaye, P.M.; Jessell, M.; Baratoux, L. Multi-scale distribution of Potassium. Thorium and Uranium in Paleoproterozoic granites from eastern Senegal. J. Afr. Earth Sci. 2018, 148, 30–51. [Google Scholar] [CrossRef]
- Fall, M.; Baratoux, D.; Jessell, M.; Ndiaye, P.M.; Vanderhaeghe, O.; Moyen, J.F.; Baratoux, L.; Bonzi, W.M.-E. The redistribution of thorium, uranium, potassium by magmatic and hydrothermal processes versus surface processes in the Saraya Batholith (Eastern Senegal): Insights from airborne radiometrics data and topographic roughness. J. Geochem. Explor. 2020, 219, 106633. [Google Scholar] [CrossRef]
- Hoover, D.B.; Heran, W.D.; Hill, P.L. The Geophysical Expression of Selected Mineral Deposit Models; CiteseerX: Princeton, NJ, USA, 1992. [Google Scholar]
Rock Type | Potassium (%) | Uranium (ppm) | Thorium (ppm) | |||
---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | |
Acid Extrusives | 1.0–6.2 | 3.1 | 0.8–16.4 | 4.1 | 1.1–41.0 | 11.9 |
Acid Intrusives | 1.0–7.6 | 3.4 | 0.1–30.0 | 4.5 | 0.1–253.1 | 25.7 |
Intermediate Extrusives | 0.01–2.5 | 1.1 | 0.2–2.6 | 1.1 | 0.4–6.4 | 2.4 |
Intermediate Intrusives | 0.1–6.2 | 2.1 | 0.1–23.4 | 3.2 | 0.4–106.0 | 12.2 |
Basic Extrusives | 0.06–2.4 | 0.7 | 0.03–3.3 | 0.8 | 0.05–8.8 | 2.2 |
Basic Intrusives | 0.01–2.6 | 0.8 | 0.01–5.7 | 0.8 | 0.03–15.0 | 2.3 |
Ultrabasic | 0–0.8 | 0.3 | 0–1.6 | 0.3 | 0–7.5 | 1.4 |
Chemical Sedimentary Rocks | 0.02–8.4 | 0.6 | 0.03–26.7 | 3.6 | 0.03–132.0 | 14.9 |
Carbonates | 0.01–3.5 | 0.3 | 0.03–18.0 | 2 | 0.03–10.8 | 1.3 |
Detrital Sedimentary Rocks | 0.01–9.7 | 1.5 | 0.1–80.0 | 4.8 | 0.2–362.0 | 12.4 |
Metamorphosed Igneous Rocks | 0.1–6.1 | 2.5 | 0.1–148.5 | 4 | 0.1–104.2 | 14.8 |
Metamorphosed Sedimentary Rocks | 0.01–5.3 | 2.1 | 0.1–53.4 | 3 | 0.1–91.4 | 12 |
Subsystem | Band No. | Spectral Range (μm) | Radiometric Resolution | Absolute Accuracy | Spatial Resolution (m) | Signal Quantization (Bits) |
---|---|---|---|---|---|---|
VNIR | 1 | 0.52–0.60 | NEΔρ ≤ 0.5% | ≤±4% | 15 | 8 |
2 | 0.63–0.69 | |||||
3 | 0.78–0.86 | |||||
3N | 0.78–0.86 | |||||
SWIR | 4 | 1.60–1.70 | NEΔρ ≤ 0.5% | ≤±4% | 30 | 8 |
5 | 2.145–2.185 | NEΔρ ≤ 1.3% | ||||
6 | 2.185–2.225 | NEΔρ ≤ 1.3% | ||||
7 | 2.235–2.285 | NEΔρ ≤ 1.3% | ||||
8 | 2.295–2.365 | NEΔρ ≤ 1.0% | ||||
9 | 2.360–2.430 | NEΔρ ≤ 1.3% | ||||
TIR | 10 | 8.125–8.475 | NEΔT ≤ 0.3 K | ≤3 K (200–240 K) | 90 | 12 |
11 | 8.475–8.825 | ≤2 K (240–270 K) | ||||
12 | 8.925–9.275 | ≤1 K (270–340 K) | ||||
13 | 10.25–10.95 | ≤2 K (340–370 K) | ||||
14 | 10.95–11.65 |
Bands Ratios | Equations | Target Minerals |
---|---|---|
CLMI | (band 4 + band 6)/band 5 | Alunite/kaolinite/montmorillonite |
PHMI | (band 5 + band 7)/band 6 | Sericite/muscovite/illite/smectite |
PRMI | (band 7 + band 9)/band 8 | Epidote/chlorite/carbonates |
IOI | (band 5/band 3) + (band 1/band 2) | Hematite/goethite/jarosite |
Data Origin | Input Layer | Membership Type | Fuzzy Operator |
---|---|---|---|
Aster Dataset | Argilic | Lineare | γ = 0.72 |
Phyllic | Lineare | ||
Propylitic | Lineare | ||
Iron oxydes | Lineare | ||
Spectrometry gamma Dataset | K | Lineare | γ = 0.72 |
K/eTh | Lineare | ||
K/eU | Lineare |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamouch, Y.; Attou, A.; Miftah, A.; Ouchchen, M.; Dadi, B.; Achkouch, L.; Et-tayea, Y.; Allaoui, A.; Boualoul, M.; Randazzo, G.; et al. Mapping of Hydrothermal Alteration Zones in the Kelâat M’Gouna Region Using Airborne Gamma-Ray Spectrometry and Remote Sensing Data: Mining Implications (Eastern Anti-Atlas, Morocco). Appl. Sci. 2022, 12, 957. https://doi.org/10.3390/app12030957
Mamouch Y, Attou A, Miftah A, Ouchchen M, Dadi B, Achkouch L, Et-tayea Y, Allaoui A, Boualoul M, Randazzo G, et al. Mapping of Hydrothermal Alteration Zones in the Kelâat M’Gouna Region Using Airborne Gamma-Ray Spectrometry and Remote Sensing Data: Mining Implications (Eastern Anti-Atlas, Morocco). Applied Sciences. 2022; 12(3):957. https://doi.org/10.3390/app12030957
Chicago/Turabian StyleMamouch, Younes, Ahmed Attou, Abdelhalim Miftah, Mohammed Ouchchen, Bouchra Dadi, Lahsen Achkouch, Yassine Et-tayea, Abdelhamid Allaoui, Mustapha Boualoul, Giovanni Randazzo, and et al. 2022. "Mapping of Hydrothermal Alteration Zones in the Kelâat M’Gouna Region Using Airborne Gamma-Ray Spectrometry and Remote Sensing Data: Mining Implications (Eastern Anti-Atlas, Morocco)" Applied Sciences 12, no. 3: 957. https://doi.org/10.3390/app12030957
APA StyleMamouch, Y., Attou, A., Miftah, A., Ouchchen, M., Dadi, B., Achkouch, L., Et-tayea, Y., Allaoui, A., Boualoul, M., Randazzo, G., Lanza, S., & Muzirafuti, A. (2022). Mapping of Hydrothermal Alteration Zones in the Kelâat M’Gouna Region Using Airborne Gamma-Ray Spectrometry and Remote Sensing Data: Mining Implications (Eastern Anti-Atlas, Morocco). Applied Sciences, 12(3), 957. https://doi.org/10.3390/app12030957