Development and Trial of a Prototype Device for Sensorimotor Therapy in Patients with Distal Radius Fractures
Abstract
:1. Introduction
- (1)
- Is the new device applicable to patients with restriction of the wrist joint RoM?
- (2)
- Does therapy with the new device improve RoM?
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Participants
2.3. Prototype: Ghost
2.4. Interventions
2.4.1. Patient Limb Position
2.4.2. Vibratory Stimulus Application
2.4.3. Combined Intervention with Vibration and Motion Observation
2.4.4. Interventions Administered to All Patients
2.5. Measurement of Intervention Time
2.6. Outcomes
2.6.1. Primary Outcome: Arc of Wrist Flexion-Extension
2.6.2. Secondary Outcome: Feasibility of the Ghost System
2.6.3. Period of Data Collection
2.7. Analytic Strategies
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Japanese Orthopeadic Association Corporation. Japanese Orthopeadic Association Clinical Practice Guideline on the Management of Distal Radius Fractures, 2nd ed.; Nankodo Co., Ltd.: Tokyo, Japan, 2017. [Google Scholar]
- Gates, D.H.; Walters, L.S.; Cowley, J.; Wilken, J.M.; Resnik, L. Range of motion requirements for upper-limb activities of daily living. Am. J. Occup. Ther. 2016, 70, 7001350010p1–7001350010p10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, I.H.; Leung, F.; Yuen, G. Assessing results after distal radius fracture treatment: A comparison of objective and subjective tools. Geriatr. Orthop. Surg. Rehabil. 2011, 2, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busse, J.W.; Bhandari, M.; Guyatt, G.H.; Heels-Ansdell, D.; Kulkarni, A.V.; Mandel, S.; Sanders, D.; Schemitsch, E.; Swiontkowski, M.; Tornetta, P.; et al. Development and validation of an instrument to predict functional recovery in tibial fracture patients: The Somatic Pre-Occupation and Coping (SPOC) questionnaire. J. Orthop. Trauma 2012, 26, 370–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lissek, S.; Wilimzig, C.; Stude, P.; Pleger, B.; Kalisch, T.; Maier, C.; Peters, S.A.; Nicolas, V.; Tegenthoff, M.; Dinse, H.R. Immobilization impairs tactile perception and shrinks somatosensory cortical maps. Curr. Biol. 2009, 19, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Imai, R.; Osumi, M.; Ishigaki, T.; Morioka, S. Relationship between pain and hesitation during movement initiation after distal radius fracture surgery: A preliminary study. Hand. Surg. Rehabil. 2018, 37, 167–170. [Google Scholar] [CrossRef]
- Villatte, J.; Taconnat, L.; Bidet-Ildei, C.; Toussaint, L. Short-term upper limb immobilization and the embodied view of memory: A pilot study. PLoS ONE 2021, 16, e0248239. [Google Scholar] [CrossRef]
- Ngomo, S.; Leonard, G.; Mercier, C. Influence of the amount of use on hand motor cortex representation: Effects of immobilization and motor training. Neuroscience 2012, 220, 208–214. [Google Scholar] [CrossRef]
- Button, D.C.; Kalmar, J.M. Understanding exercise-dependent plasticity of motoneurons using intracellular and intramuscular approaches. Appl. Physiol. Nutr. Metab. 2019, 44, 1125–1133. [Google Scholar] [CrossRef] [Green Version]
- Imai, R.; Osumi, M.; Morioka, S. Influence of illusory kinesthesia by vibratory tendon stimulation on acute pain after surgery for distal radius fractures: A quasi-randomized controlled study. Clin. Rehabil. 2016, 30, 594–603. [Google Scholar] [CrossRef]
- Ahmed, S.; Plazier, M.; Ost, J.; Stassijns, G.; Deleye, S.; Ceyssens, S.; Dupont, P.; Stroobants, S.; Staelens, S.; De Ridder, D.; et al. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: A water PET and EEG imaging study. BMC Neurol. 2018, 18, 191. [Google Scholar] [CrossRef] [Green Version]
- Lyons, K.D.; Parks, A.G.; Dadematthews, O.; Zandieh, N.; McHenry, P.; Games, K.E.; Goodlett, M.D.; Murrah, W.; Roper, J.; Sefton, J.M. Core and whole body vibration exercise influences muscle sensitivity and posture during a military foot march. Int. J. Environ. Res. Public Health 2021, 18, 4966. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Zheng, J.; Chen, S.; Qiao, J.; Wang, X. Whole body vibration exercise for chronic musculoskeletal pain: A systematic review and meta-analysis of randomized controlled trials. Arch. Phys. Med. Rehabil. 2019, 100, 2167–2178. [Google Scholar] [CrossRef]
- Nijs, J.; Kosek, E.; Van Oosterwijck, J.; Meeus, M. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: To exercise or not to exercise? Pain Physician 2012, 15, ES205–ES213. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Rietz, C.; Dohle, C.; Borgetto, B. The efficacy of movement representation techniques for treatment of limb pain--A systematic review and meta-analysis. J. Pain 2016, 17, 167–180. [Google Scholar] [CrossRef]
- McGee, C.; Skye, J.; Van Heest, A. Graded motor imagery for women at risk for developing type I CRPS following closed treatment of distal radius fractures: A randomized comparative effectiveness trial protocol. BMC Musculoskelet. Disord. 2018, 19, 202. [Google Scholar] [CrossRef]
- Koo, K.I.; Park, D.K.; Youm, Y.S.; Cho, S.D.; Hwang, C.H. Enhanced reality showing long-lasting analgesia after total knee arthroplasty: Prospective, randomized clinical trial. Sci. Rep. 2018, 8, 2343. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.T.; Li, Y.I.; Hu, W.P.; Huang, C.C.; Du, Y.C. A scoping review of the efficacy of virtual reality and exergaming on patients of musculoskeletal system disorder. J. Clin. Med. 2019, 8, 791. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, T.; Thomas, H.N. Mechanism of the Developed sensorimotor therapy device: Synchronous inputs of visual stimuli and vibration to improve recovery of distal radius fractures. Biomed. J. Sci. Tech. Res. 2021, 38, 30152–30155. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Park, S.; Kyung, G.; Choi, D.; Yi, J.; Lee, S.; Choi, B.; Lee, S. Effects of display curvature and task duration on proofreading performance, visual discomfort, visual fatigue, mental workload, and user satisfaction. Appl. Ergon. 2019, 78, 26–36. [Google Scholar] [CrossRef]
- Yamashita, K.; Zenke, Y.; Sakai, A.; Oshige, T.; Moritani, S.; Maehara, T. Comparison of functional outcome between early and delayed internal fixation using volar locking plate for distal radius fractures. J. UOEH 2015, 37, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Society of Hand Therapists. Goniometry. In Clinical Assessment Recommendations, 3rd ed.; American Society of Hand Therapists: Mount Laurel, NJ, USA, 2015; pp. 77–116. [Google Scholar]
- Reissner, L.; Fischer, G.; List, R.; Taylor, W.R.; Giovanoli, P.; Calcagni, M. Minimal detectable difference of the finger and wrist range of motion: Comparison of goniometry and 3D motion analysis. J. Orthop. Surg. Res. 2019, 14, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafri, M.; Weiss, P.L.; Zeilig, G.; Bondi, M.; Baum-Cohen, I.; Kizony, R. Performance in complex life situations: Effects of age, cognition, and walking speed in virtual versus real life environments. J. Neuroeng. Rehabil. 2021, 18, 30. [Google Scholar] [CrossRef] [PubMed]
- Atkins, A.S.; Khan, A.; Ulshen, D.; Vaughan, A.; Balentin, D.; Dickerson, H.; Liharska, L.E.; Plassman, B.; Welsh-Bohmer, K.; Keefe, R.S.E. Assessment of instrumental activities of daily living in older adults with subjective cognitive decline using the Virtual Reality Functional Capacity Assessment Tool (VRFCAT). J. Prev. Alzheimers. Dis. 2018, 5, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Montague, M.D.; Lewis, J.T.; Moushmoush, O.; Ryu, J. Distal radius fractures: Does obesity affect fracture pattern, treatment, and functional outcomes? Hand 2019, 14, 398–401. [Google Scholar] [CrossRef] [PubMed]
- El Hage, R.; Bachour, F.; Sebaaly, A.; Issa, M.; Zakhem, E.; Maalouf, G. The influence of weight status on radial bone mineral density in Lebanese women. Calcif. Tissue Int. 2014, 94, 465–467. [Google Scholar] [CrossRef]
- Bredella, M.A.; Lin, E.; Gerweck, A.V.; Landa, M.G.; Thomas, B.J.; Torriani, M.; Bouxsein, M.L.; Miller, K.K. Determinants of bone microarchitecture and mechanical properties in obese men. J. Clin. Endocrinol. Metab. 2012, 97, 4115–4122. [Google Scholar] [CrossRef]
- Ducher, G.; Bass, S.L.; Naughton, G.A.; Eser, P.; Telford, R.D.; Daly, R.M. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: Implications for bone strength at the distal forearm. Am. J. Clin. Nutr. 2009, 90, 1104–1111. [Google Scholar] [CrossRef]
- Sornay-Rendu, E.; Boutroy, S.; Vilayphiou, N.; Claustrat, B.; Chapurlat, R.D. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: The Os des Femmes de Lyon (OFELY) study. J. Bone Miner. Res. 2013, 28, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Morillas, F.; Valero, J. Random resampling numerical simulations applied to a SEIR compartmental model. Eur. Phys. J. Plus 2021, 136, 1067. [Google Scholar] [CrossRef]
- Mulders, M.A.M.; Fuhri Snethlage, L.J.; de Muinck Keizer, R.O.; Goslings, J.C.; Schep, N.W.L. Functional outcomes of distal radius fractures with and without ulnar styloid fractures: A meta-analysis. J. Hand Surg. Eur. Vol. 2018, 43, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.C.; Cho, H.E.; Kim, Y.; Kim, H.M.; Shauver, M.J. Assessment of anatomic restoration of distal radius fractures among older adults: A secondary analysis of a randomized clinical trial. JAMA Netw. Open 2020, 3, e1919433. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.L.; McNulty, P.A. Age-related changes in cutaneous sensation in the healthy human hand. Age 2013, 35, 1077–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, J.; Murata, S.; Kodama, T.; Nakano, H.; Soma, M.; Nakae, H.; Satoh, Y.; Kogo, H.; Umeki, N. Age-related changes in the response of finger skin blood flow during a braille character discrimination task. Healthcare 2021, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Wakabayashi, H.; Maeda, K.; Shamoto, H.; Taketani, Y.; Kayashita, J.; Momosaki, R. Body mass index and recovery of activities of daily living in older patients with femoral fracture: An analysis of a national inpatient database in Japan. Arch. Gerontol. Geriatr. 2020, 87, 104009. [Google Scholar] [CrossRef]
- Acosta-Olivo, C.; Gonzalez-Saldivar, J.C.; Villarreal-Villarreal, G.; Torres-Botello, A.; Gomez-Garcia, E.; Tamez-Mata, Y.; Peña-Martinez, V. Correlation between obesity and severity of distal radius fractures. Orthop. Traumatol. Surg. Res. 2017, 103, 199–202. [Google Scholar] [CrossRef]
- Kang, M.S.; Park, C.Y.; Lee, G.Y.; Cho, D.H.; Kim, S.J.; Han, S.N. Effects of in vitro vitamin D treatment on function of T cells and autophagy mechanisms in high-fat diet-induced obese mice. Nutr. Res. Pract. 2021, 15, 673–685. [Google Scholar] [CrossRef]
- Fujita, K.; Iwasaki, M.; Ochi, H.; Fukuda, T.; Ma, C.; Miyamoto, T.; Takitani, K.; Negishi-Koga, T.; Sunamura, S.; Kodama, T.; et al. Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat. Med. 2012, 18, 589–594. [Google Scholar] [CrossRef]
- Niedermair, T.; Straub, R.H.; Brochhausen, C.; Grässel, S. Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice. Int. J. Mol. Sci. 2020, 21, 405. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Diggins, N.H.; Gunderson, Z.J.; Fehrenbacher, J.C.; White, F.A.; Kacena, M.A. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 2020, 131, 115109. [Google Scholar] [CrossRef]
- Hamaue, Y.; Nakano, J.; Sekino, Y.; Chuganji, S.; Sakamoto, J.; Yoshimura, T.; Okita, M.; Origuchi, T. Effects of vibration therapy on immobilization-induced hypersensitivity in rats. Phys. Ther. 2015, 95, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Barrios, K.; Carolyna Gianlorenço, A.; Machado, R.; Queiroga, M.; Zeng, H.; Shaikh, E.; Yang, Y.; Nogueira, B.; Castelo-Branco, L.; Fregni, F. Exercise-induced pain threshold modulation in healthy subjects: A systematic review and meta-analysis. Princ. Pract. Clin. Res. 2020, 6, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Naito, E.; Roland, P.E.; Ehrsson, H.H. I feel my hand moving: A new role of the primary motor cortex in somatic perception of limb movement. Neuron 2002, 36, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.M.; Searle, H.K.C.; Ng, Z.H.; Wickramasinghe, N.R.L.; Molyneux, S.G.; White, T.O.; Clement, N.D.; Duckworth, A.D. Fractures of the proximal- and middle-thirds of the humeral shaft should be considered as fragility fractures. Bone Joint J. 2020, 102-B., 1475–1483. [Google Scholar] [CrossRef]
- MacDermid, J.C.; McClure, J.A.; Richard, L.; Faber, K.J.; Jaglal, S. Fracture profiles of a 4-year cohort of 266,324 first incident upper extremity fractures from population health data in Ontario. BMC Musculoskelet. Disord. 2021, 22, 996. [Google Scholar] [CrossRef]
- Corsino, C.B.; Reeves, R.A.; Sieg, R.N. Distal Radius Fractures; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kastenberger, T.; Kaiser, P.; Schmidle, G.; Schwendinger, P.; Gabl, M.; Arora, R. Arthroscopic assisted treatment of distal radius fractures and concomitant injuries. Arch. Orthop. Trauma Surg. 2020, 140, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Morrey, B.F.; Askew, L.J.; Chao, E.Y. A biomechanical study of normal functional elbow motion. J. Bone Joint Surg. Am. 1981, 63, 872–877. [Google Scholar] [CrossRef]
- Suzuki, T.; Suzuki, M.; Kanemura, N.; Hamaguchi, T. Differential effect of visual and proprioceptive stimulation on corticospinal output for reciprocal muscles. Front. Integr. Neurosci. 2019, 13, 63. [Google Scholar] [CrossRef]
- Matsuda, Y.; Miyamoro, M.; Kashiyama, A. The impact of early return to work for outpatients on occupational therapy. Kokuritsu Daigaku Rehabil. Ryohoshi Gakusyutsutaikai Shi 2017, 38, 58–63. [Google Scholar]
Postoperative Day | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 14 | 28 | 42 | 64 | 70 | 84 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intervention | Ghost or control treatment | ● | ● | ● | ● | ● | ● | |||||||
Conventional treatments | ● | ● | ● | ● | ● | ● | ● | |||||||
Evaluation | Range of motion | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
Characteristics | Ghost Group, n = 10 (Vibration with Visualization) | Control Group, n = 4 (Vibration Alone) | |
---|---|---|---|
Sex | Female:Male | 10:0 | 4:0 |
Age (years) | 76 ± 10 | 69 ± 9 | |
BMI (kg/m2) | 23.0 ± 4.9 | 22.1 ± 5.6 | |
Affected side | Right:Left | 6 (4) | 0 (4) |
Handedness | Right:Left | 10:0 | 4:0 |
AO classification | A, 3; B, 2; C, 5 | A, 0; B, 1; C, 3 | |
Radiographic parameters (mm) | Volar tilt | 14.7 ± 2.1 | 15.5 ± 1.4 |
Radial tilt | 8.2 ± 3.1 | 9.1 ± 1.9 | |
Radial inclination | 0.9 ± 0.8 | 1.4 ± 0.4 |
Group | Day 7 | Day 14 | Day 28 | Day 42 | Day 56 | Day 70 | Day 84 |
---|---|---|---|---|---|---|---|
Ghost actual (n = 10) | 73 (70–79) | 92 (82–104) | 111 (97–120) | 124 (112–132) | 130 (126–138) | 138 (134–140) | 140 (139–141) |
Ghost bootstrap (n = 1000) | 74 (73–78) | 91 (89–96) | 118 (111–124) | 118 (111–124) | 130 (124–134) | 133 (129–135) | 137 (134–143) |
Control actual (n = 4) | 74 (71–79) | 91 (86–98) | 108 (98–117) | 118 (112–123) | 130 (127–132) | 129 (125–136) | 137 (129–144) |
Control bootstrap (n = 1000) | 74 (69–78) | 93 (84–99) | 121 (113–131) | 121 (113–131) | 132 (127–136) | 138 (134–141) | 140 (139–143) |
Postoperative Day | Group | Marginal Mean | 95% CI for Mean Difference | Mean Difference | T | pBonferroni | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
7 | Ghost | 75.881 | 75.315 | 76.446 | 1.909 | 6.780 | <0.001 |
Control | 73.972 | 73.406 | 74.537 | ||||
14 | Ghost | 93.712 | 93.147 | 94.278 | 3.073 | 11.070 | <0.001 |
Control | 90.639 | 90.074 | 91.205 | ||||
28 | Ghost | 112.290 | 111.724 | 112.855 | 7.155 | 25.777 | <0.001 |
Control | 105.135 | 104.569 | 105.700 | ||||
42 | Ghost | 123.076 | 122.510 | 123.641 | 7.344 | 26.456 | <0.001 |
Control | 115.732 | 115.167 | 116.298 | ||||
56 | Ghost | 133.200 | 132.635 | 133.766 | 5.746 | 20.701 | <0.001 |
Control | 127.454 | 126.889 | 128.020 | ||||
70 | Ghost | 140.008 | 139.443 | 140.574 | 9.520 | 34.298 | <0.001 |
Control | 130.488 | 129.922 | 131.053 | ||||
84 | Ghost | 143.065 | 142.500 | 143.631 | 8.680 | 31.271 | <0.001 |
Control | 134.385 | 133.820 | 134.951 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narita, D.; Hamaguchi, T.; Nakamura-Thomas, H. Development and Trial of a Prototype Device for Sensorimotor Therapy in Patients with Distal Radius Fractures. Appl. Sci. 2022, 12, 1967. https://doi.org/10.3390/app12041967
Narita D, Hamaguchi T, Nakamura-Thomas H. Development and Trial of a Prototype Device for Sensorimotor Therapy in Patients with Distal Radius Fractures. Applied Sciences. 2022; 12(4):1967. https://doi.org/10.3390/app12041967
Chicago/Turabian StyleNarita, Daichi, Toyohiro Hamaguchi, and Hiromi Nakamura-Thomas. 2022. "Development and Trial of a Prototype Device for Sensorimotor Therapy in Patients with Distal Radius Fractures" Applied Sciences 12, no. 4: 1967. https://doi.org/10.3390/app12041967
APA StyleNarita, D., Hamaguchi, T., & Nakamura-Thomas, H. (2022). Development and Trial of a Prototype Device for Sensorimotor Therapy in Patients with Distal Radius Fractures. Applied Sciences, 12(4), 1967. https://doi.org/10.3390/app12041967