Characterization of Wind Gusts: A Study Based on Meteorological Tower Observations
Abstract
:1. Introduction
- (1)
- to determine the probability distribution model that best describes different measures of gusts.
- (2)
- to estimate parameterizations used to represent the dependence of gust factor and peak factor on average wind speed and turbulent intensity.
- (3)
- to study the dependence of different gust descriptors on observation altitude and atmospheric stability.
2. Materials and Methodology
2.1. Site Description
2.2. Data Collection
2.3. Data Quality Control
2.4. Definition of Wind Gust Descriptors
3. Results and Discussion
3.1. Distribution Fitting of Gust Description
3.2. Gust Parameterizations
3.3. Vertical Profiles of Gust Descriptors
4. Concluding Remarks
- The probability distribution that most accurately represented the 12 wind gust descriptors was somewhat different. Specifically, the Weibull distribution was the most appropriate for those parameters, with length per time for units, such as 10-min average wind speed, gust magnitude, gust amplitude and elapsed amplitude. The unitless parameters, e.g., gust factor, peak factor and turbulence intensity, were best fitted by log-logistic distribution. The rising time and gust asymmetry factor exhibited lognormal distribution, while the Gamma distribution adequately described the distribution of gust length scale, rising amplitude and elapsed time.
- The respective dependence of gust factor and peak factor on average wind speed and turbulent intensity was strongly tied with height. Note that gust factors were displayed as a linear function of turbulence intensity. Nevertheless, the empirical linear formulas given in previous studies have tended to over-predict.
- The vertical extent of gust descriptors appeared to exhibit different profile shapes. In general, the 10-min average wind speed, gust amplitude and gust length scale are found to increase monotonically with height, whereas the gust amplitude, peak factor, gust factor, turbulence intensity, rising amplitude and elapsed amplitude tended to decrease as a function of height. For several gust descriptors, e.g., 10-min average wind speed and gust length scale, the magnitude of the vertical profile may vary with atmospheric stability condition.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, B.; Chan, P.; Li, Q.; He, Y.; Shu, Z. Characterising the fractal dimension of wind speed time series under different terrain conditions. J. Wind Eng. Ind. Aerodyn. 2020, 201, 104165. [Google Scholar] [CrossRef]
- Boettcher, F.; Renner, C.; Waldl, H.-P.; Peinke, J. On the statistics of wind gusts. Boundary-Layer Meteorol. 2003, 108, 163–173. [Google Scholar] [CrossRef]
- Shu, Z.R.; Chan, P.W.; Li, Q.S.; He, Y.C.; Yan, B.W. Quantitative assessment of offshore wind speed variability using fractal analysis. Wind. Struct. 2020, 31, 363–371. [Google Scholar]
- He, Y.; He, J.; Chen, W.; Chan, P.; Fu, J.; Li, Q. nsights from Super Typhoon Mangkhut (1822) for wind engineering practices. J. Wind Eng. Ind. Aerodyn. 2020, 203, 104238. [Google Scholar] [CrossRef]
- Hu, W.; Letson, F.; Barthelmie, R.J.; Pryor, S.C. Wind gust characterization at wind turbine relevant heights in moderately complex terrain. J. Appl. Meteorol. Clim. 2018, 57, 1459–1476. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Porrini, C.; Fovell, R.G. Combination of wind gust models in convective events. J. Wind Eng. Ind. Aerodyn. 2020, 199, 104118. [Google Scholar] [CrossRef]
- Suomi, I.; Gryning, S.; Floors, R.; Vihma, T.; Fortelius, C. On the vertical structure of wind gusts. Q. J. R. Meteorol. Soc. 2015, 141, 1658–1670. [Google Scholar] [CrossRef]
- WMO. Measurement of surface wind. In Guide to Meteorological Instruments and Methods of Observation; WMO-No. 8; 2008 Edition Updated in 2010; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Letson, F.; Barthelmie, R.J.; Hu, W.; Brown, L.D.; Pryor, S.C. Wind gust quantification using seismic measurements. Nat. Hazards 2019, 99, 355–377. [Google Scholar] [CrossRef]
- Friederichs, P.; Göber, M.; Bentzien, S.; Lenz, A.; Krampitz, R. A probabilistic analysis of wind gusts using extreme value statistics. Meteorol. Z. 2009, 18, 615–629. [Google Scholar] [CrossRef]
- Pasztor, F.; Matulla, C.; Zuvela-Aloise, M.; Rammer, W.; Lexer, M.J. Developing predictive models of wind damage in Austrian forests. Ann. For. Sci. 2015, 72, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Suomi, I.; Gryning, S.; O’Connor, E.J.; Vihma, T. Methodology for obtaining wind gusts using Doppler lidar. Q. J. R. Meteorol. Soc. 2017, 143, 2061–2072. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.; Schindler, D.; Albrecht, A.T.; Buchholz, A. The role of highly-resolved gust speed in simulations of storm damage in forests at the landscape scale: A case study from southwest Germany. Atmosphere 2016, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, O. Development and application of a physical approach to estimating wind gusts. Mon. Weather Rev. 2001, 129, 5–25. [Google Scholar] [CrossRef]
- Fang, G.; Zhao, L.; Cao, S.; Ge, Y.; Li, K. Gust characteristics of near-ground typhoon winds. J. Wind Eng. Ind. Aerodyn. 2019, 188, 323–337. [Google Scholar] [CrossRef]
- Suomi, I.; Vihma, T. Wind gust measurement techniques—From traditional anemometry to new possibilities. Sensors 2018, 18, 1300. [Google Scholar] [CrossRef] [Green Version]
- Ágústsson, H.; Ólafsson, H. Forecasting wind gusts in complex terrain. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2009, 103, 173–185. [Google Scholar] [CrossRef]
- Hewston, R.; Dorling, S.R. An analysis of observed daily maximum wind gusts in the UK. J. Wind Eng. Ind. Aerodyn. 2011, 99, 845–856. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.; Li, Q.; He, Y.; Chan, P.W. Gust factors for tropical cyclone, monsoon and thunderstorm winds. J. Wind Eng. Ind. Aerodyn. 2015, 142, 1–14. [Google Scholar] [CrossRef]
- He, J.; Li, Q.; Chan, P. Reduced gust factor for extreme tropical cyclone winds over ocean. J. Wind Eng. Ind. Aerodyn. 2021, 208, 104445. [Google Scholar] [CrossRef]
- Türk, M.; Emeis, S. The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn. 2010, 98, 466–471. [Google Scholar] [CrossRef]
- Letson, F.; Barthelmie, R.J.; Hu, W.; Pryor, S.C. Characterizing wind gusts in complex terrain. Atmospheric Chem. Phys. 2019, 19, 3797–3819. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; Wiley: New York, NY, USA, 2001; Volume 2. [Google Scholar]
- Suomi, I.; Vihma, T.; Gryning, S.-E.; Fortelius, C. Wind-gust parametrizations at heights relevant for wind energy: A study based on mast observations. Q. J. R. Meteorol. Soc. 2013, 139, 1298–1310. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The influence of sampling and filtering on measured wind gusts. J. Atmospheric Ocean. Technol. 1987, 4, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Greenway, M. An analytical approach to wind velocity gust factors. J. Wind Eng. Ind. Aerodyn. 1979, 5, 61–91. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Wind Turbines-Part 1: Design Requirements; IEC 614001 Ed. 3; International Electrotechnical Commission: Geneva, Switzerland, 2006. [Google Scholar]
- Manwell, J.F.; McCowan, J.G.; Rogers, A.L. Bind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bierbooms, W.; Cheng, P.-W. Stochastic gust model for design calculations of wind turbines. J. Wind Eng. Ind. Aerodyn. 2002, 90, 1237–1251. [Google Scholar] [CrossRef]
- Li, L.; Lu, C.; Chan, P.-W.; Zhang, X.; Yang, H.-L.; Lan, Z.-J.; Zhang, W.-H.; Liu, Y.-W.; Pan, L.; Zhang, L. Tower observed vertical distribution of PM2. 5, O3 and NOx in the Pearl River Delta. Atmospheric Environ. 2020, 220, 117083. [Google Scholar] [CrossRef]
- Luo, Y.P.; Fu, J.Y.; Li, Q.S.; Chan, P.W.; He, Y.C. Observation of Typhoon Hato based on the 356-m high meteorological gradient tower at Shenzhen. J. Wind. Eng. Ind. Aerodyn. 2020, 207, 104408. [Google Scholar] [CrossRef]
- He, J.; He, Y.; Li, Q.; Chan, P.; Zhang, L.; Yang, H.; Li, L. Observational study of wind characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104362. [Google Scholar] [CrossRef]
- He, J.; Chan, P.; Li, Q.; Li, L.; Lu, C.; Zhang, L.; Yang, H. Characteristics of Wind Structure and Nowcasting of Gust Associated with Subtropical Squall Lines over Hong Kong and Shenzhen, China. Atmosphere 2020, 11, 270. [Google Scholar] [CrossRef] [Green Version]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Masters, F.J.; Vickery, P.J.; Bacon, P.; Rappaport, E.N. Toward objective, standardized intensity estimates from surface wind speed observations. Bull. Am. Meteorol. Soc. 2010, 91, 1665–1682. [Google Scholar] [CrossRef]
- Hojstrup, J. A statistical data screening procedure. Meas. Sci. Technol. 1993, 4, 153–157. [Google Scholar] [CrossRef]
- Foken, T.; Napo, C.J. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2. [Google Scholar]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Kaimal, J.C.; Gaynor, J.E. Another look at sonic thermometry. Boundary-Layer Meteorol. 1991, 56, 401–410. [Google Scholar] [CrossRef]
- Weber, R.O. Remarks on the definition and estimation of friction velocity. Boundary-Layer Meteorol. 1999, 93, 197–209. [Google Scholar] [CrossRef]
- Barthelmie, R.J. The effects of atmospheric stability on coastal wind climates. Meteorol. Appl. 1999, 6, 39–47. [Google Scholar] [CrossRef]
- Dimitrov, N. Comparative analysis of methods for modelling the short-term probability distribution of extreme wind turbine loads. Wind Energy 2016, 19, 717–737. [Google Scholar] [CrossRef]
- Shu, Z.; Li, Q.; Chan, P.W. Statistical analysis of wind characteristics and wind energy potential in Hong Kong. Energy Convers. Manag. 2015, 101, 644–657. [Google Scholar] [CrossRef]
- Shu, Z.; Li, Q.; Chan, P.W. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Appl. Energy 2015, 156, 362–373. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; He, Y.C.; Chan, P.W. Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications. Appl. Energy 2016, 169, 150–163. [Google Scholar] [CrossRef]
- Cheng, P.; Bierbooms, W. Distribution of extreme gust loads of wind turbines. J. Wind Eng. Ind. Aerodyn. 2001, 89, 309–324. [Google Scholar] [CrossRef]
- Hogg, R.V.; McKean, J.; Craig, A.T. Introduction to Mathematical Statistics; Pearson Education: New York, NY, USA, 2005. [Google Scholar]
- Bardal, L.M.; Sætran, L.R. Wind gust factors in a coastal wind climate. Energy Procedia 2016, 94, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.C. Wind Loading in Hong Kong: Commentary on the Code of Practice on Wind Effects Hong Kong; Hong Kong Institution of Engineers: Hong Kong, 1983. [Google Scholar]
- Deaves, D.M.; Harris, R.I. A Mathematical Model of the Structure of Strong Winds; CIRIA Report 76; Construction Industry Research and Information Association: London, UK, 1978. [Google Scholar]
Instrument | Height (m) | Observation Element | Output Frequency |
---|---|---|---|
3D (Three dimensional) sonic anemometer (CSAT3) | 10, 40, 160, 320 above the level of ground | Three orthogonal wind components (ux, uy, uz), sonic virtual temperature (Ts) | 10 Hz |
Year | Start | End |
---|---|---|
2018 | 15 September 00:00 | 17 September 23:59 |
2018 | 8 January 20:00 | 8 January 23:59 |
2018 | 9 January 00:00 | 9 January 11:00 |
2018 | 8 March 00:00 | 8 March 11:00 |
2018 | 7 April 00:00 | 7 April 09:00 |
2019 | 4 March 20:00 | 4 March 23:59 |
2019 | 5 March 00:00 | 5 March 04:00 |
2019 | 22 September 06:00 | 22 September 11:00 |
2019 | 7 October 00:00 | 7 October 08:00 |
2020 | 16 February 00:00 | 16 February 17:00 |
Stability Class | Range of Monin–Obukhov Length (m) |
---|---|
Unstable (u) | |
Very unstable (vu) | |
Very stable (vs) | |
Stable (s) | |
Neutral (n) |
Mean Speed | Gust Amplitude | Gust Amplitude | Gust Factor | Peak Factor | TI | |
Weibull | −846.3 | −1008.7 | −612.2 | 128.8 | −199.8 | 615.9 |
Gamma | −870.1 | −1028.5 | −617.6 | 202.4 | −174.8 | 641.9 |
Log-Normal | −901.2 | −1050.6 | −637.2 | 206.7 | −176.7 | 632.4 |
Log-Logistic | −875.2 | −1037.9 | −626.0 | 215.2 | −174.4 | 659.5 |
Rise Time | Lapse Time | Rise Magnitude | Lapse Magnitude | GAF | Lg | |
Weibull | −1752.3 | −1905.1 | −733.3 | −689.9 | −767.8 | −2930.8 |
Gamma | −1743.8 | −1896.7 | −730.3 | −690.4 | −761.7 | −2927.8 |
Log-Normal | −1739.7 | −1899.7 | −744.8 | −707.6 | −742.7 | −2940.6 |
Log-Logistic | −1752.4 | −1905.6 | −738.3 | −697.7 | −749.0 | −2944.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, B.; Chan, P.; Li, Q.; He, Y.; Cai, Y.; Shu, Z.; Chen, Y. Characterization of Wind Gusts: A Study Based on Meteorological Tower Observations. Appl. Sci. 2022, 12, 2105. https://doi.org/10.3390/app12042105
Yan B, Chan P, Li Q, He Y, Cai Y, Shu Z, Chen Y. Characterization of Wind Gusts: A Study Based on Meteorological Tower Observations. Applied Sciences. 2022; 12(4):2105. https://doi.org/10.3390/app12042105
Chicago/Turabian StyleYan, Bowen, Pakwai Chan, Qiusheng Li, Yuncheng He, Ying Cai, Zhenru Shu, and Yao Chen. 2022. "Characterization of Wind Gusts: A Study Based on Meteorological Tower Observations" Applied Sciences 12, no. 4: 2105. https://doi.org/10.3390/app12042105
APA StyleYan, B., Chan, P., Li, Q., He, Y., Cai, Y., Shu, Z., & Chen, Y. (2022). Characterization of Wind Gusts: A Study Based on Meteorological Tower Observations. Applied Sciences, 12(4), 2105. https://doi.org/10.3390/app12042105