A Numerical Study of Chemical Compatibility of GCLs
Abstract
:1. Introduction
2. COMSOL Numerical Model
2.1. Geometric Model
2.2. The Physical Field
2.3. Mesh Generated and Solving
3. The Numerical Results and Discussion
3.1. An Equation for Calculating the Hydraulic Conductivity of GCLs under DIW
3.2. An Equation for Calculating the Hydraulic Conductivity of GCLs under Chemical Solution
3.3. The Mesoscopic Mechanism of GCLs under Chemical Solution
4. Predictable and the Experimental Data Comparison
5. Conclusions
- (1)
- The application of small bentonite particles and small porosity is an effective method to improve the chemical compatibility of GCLs. With the increase in the chemical solution concentration, the swelling of the bentonite particles would be suppressed.
- (2)
- From the mesoscopic view, the final mobile porosity and the final pore size are the key factors affecting the hydraulic conductivity of GCLs. When the ionic strength increased from low to medium, the changes in particle size, the final pore size, the final mobile porosity, and the hydraulic conductivity were obvious. However, further increased the ionic strength from medium to high, the changes of these parameters tend to be gentle, and the changes of hydraulic conductivity were not obvious.
- (3)
- Based on the numerical results, a theoretical model for predicting the hydraulic conductivity of GCLs in chemical solutions was developed. The hydraulic conductivity can be predicted by the ionic strength of the chemical solution, the initial mobile porosity, and the initial particle size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shackelford, C.D.; Benson, C.H.; Katsumi, T.; Edil, T.B.; Lin, L. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 2000, 18, 133–161. [Google Scholar] [CrossRef]
- Jo, H.Y.; Katsumi, T.; Benson, C.H.; Edil, T.B. Hydraulic conductivity and swelling of nonprehydrated gcls permeated with single-species salt solutions. J. Geotech. Geoenviron. Eng. 2001, 127, 557–567. [Google Scholar] [CrossRef]
- Kolstad, D.C.; Benson, C.H.; Edil, T.B. Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. J. Geotech. Geoenviron. 2004, 130, 1236–1249. [Google Scholar] [CrossRef] [Green Version]
- Benson, C.H.; Oren, A.H.; Gates, W.P. Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalka-line solution. Geotext. Geomembr. 2010, 28, 206–218. [Google Scholar] [CrossRef]
- Tian, K.; Benson, C.H.; Likos, W.J. Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate. J. Geotech. Geoenviron. Eng. 2016, 142, 04016037. [Google Scholar] [CrossRef]
- Katsumi, T.; Ishimori, H.; Ogawa, A.; Yoshikawa, K.; Hanamoto, K.; Fukagawa, R. Hydraulic conductivity of nonprehy-drated geosynthetic clay liners permeated with inorganic solutions and waste leachates. Soils Found 2007, 47, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.Y.; Benson, C.H.; Shackelford, C.D.; Lee, J.M.; Edil, T.B. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J. Geotech. Geoenviron. 2005, 131, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Geometric and dielectric characterization of porous media. Phys. Rev. B 1991, 44, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 2006, 33, L02318. [Google Scholar] [CrossRef]
- Jang, J.; Narsilio, G.; Santamarina, J.C. Hydraulic conductivity in spatially varying media—A pore-scale investigation. Geophys. J. Int. 2011, 184, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, L.R.; Naney, J.W.; Green, R.E.; Nielsen, D.R. Macroporosity to characterize spatial variability of hydraulic vonductivity and effects of land management. Soil Sci. Soc. Am. J. 1984, 48, 699. [Google Scholar] [CrossRef]
- Dolinar, B.; Trček, B. A new relationship between the mobile and the adsorbed water in fine-grained soils using an effective void-ratio estimation. Bull. Eng. Geol. Environ. 2018, 78, 4623–4631. [Google Scholar] [CrossRef]
- Ruhl, J.L.; Daniel, D.E. Geosynthetic Clay Liners Permeated with Chemical Solutions and Leachates. J. Geotech. Geoenviron. Eng. 1997, 123, 369–381. [Google Scholar] [CrossRef]
- Liu, Y.; Bouazza, A.; Gates, W.; Rowe, R.K. Hydraulic performance of geosynthetic clay liners to sulfuric acid solutions. Geotext. Geomembr. 2015, 43, 14–23. [Google Scholar] [CrossRef]
- Ahn, H.-S.; Jo, H.Y. Influence of exchangeable cations on hydraulic conductivity of compacted bentonite. Appl. Clay Sci. 2009, 44, 144–150. [Google Scholar] [CrossRef]
- Mukunoki, T.; Sato, K.; Fukushima, J.; Shida, K.; Take, W. Investigating the mechanism of downslope bentonite erosion in GCL liners using X-ray CT. Geotext. Geomembr. 2018, 47, 75–86. [Google Scholar] [CrossRef]
- Lange, K.; Rowe, R.K.; Jamieson, H.; Flemming, R.L.; Lanzirotti, A. Characterization of geosynthetic clay liner bentonite using micro-analytical methods. Appl. Geochem. 2010, 25, 1056–1069. [Google Scholar] [CrossRef]
- Gates, W.P.; Dumadah, G.; Bouazza, A. Micro X-ray visualisation of the interaction of geosynthetic clay liner components after partial hydration. Geotext. Geomembr. 2018, 46, 739–747. [Google Scholar] [CrossRef]
- Yan, H.; Wu, J.; Thomas, H.R.; Ding, H.; Zhan, L.; Xie, H. Analytical model for coupled consolidation and diffusion of organic contaminant transport in triple landfill liners. Geotext. Geomembr. 2021, 49, 489–499. [Google Scholar] [CrossRef]
- Xie, H.; Lou, Z.; Chen, Y.; Jin, A.; Zhan, T.L.; Tang, X. An analytical solution to organic contaminant diffusion through com-posite liners considering the effect of degradation. Geotext. Geomembr. 2013, 36, 10–18. [Google Scholar] [CrossRef]
- Xie, H.; Lou, Z.; Chen, Y.; Jin, A.; Chen, P. An analytical solution to contaminant advection and dispersion through a GCL/AL liner system. Chin. Sci. Bull. 2011, 56, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Touze-Foltz, N.; Duquennoi, C.; Gaget, E. Hydraulic and mechanical behavior of GCLs in contact with leachate as part of a composite liner. Geotext. Geomembr. 2006, 24, 188–197. [Google Scholar] [CrossRef]
- Guyonnet, D.; Gaucher, E.; Gaboriau, H.; Pons, C.H.; Clinard, C.; Norotte, W.; Didier, G. Geosynthetic clay liner in-teraction with leachate: Correlation between permeability, microstructure, and surface chemistry. J. Geotech. Geoenviron. 2005, 131, 740–749. [Google Scholar] [CrossRef]
- Azad, V.J.; Li, C.; Verba, C.; Ideker, J.; Isgor, O.B. A COMSOL–GEMS interface for modeling coupled reactive-transport geochemical processes. Comput. Geosci. 2016, 92, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Faisal, A.A.; Ibreesam, M.M.; Al-Ansari, N.; Naji, L.A.; Naushad, M.; Ahamad, T. COMSOL multiphysics 3.5a package for simulating the cadmium transport in the sand bed-bentonite low permeable barrier. J. King Saud Univ. Sci. 2020, 32, 1944–1952. [Google Scholar] [CrossRef]
- Pishkoo, A.; Darus, M. Using fractal calculus to solve fractal Navier-Stokes equations, and simulation of laminar static mixing in COMSOL Multiphysics. Fractal Fract. 2021, 5, 16. [Google Scholar] [CrossRef]
- Curti, E.; Appelo, C.; Wersin, P. Modelling bentonite–water interactions at high solid/liquid ratios: Swelling and diffuse double layer effects. Appl. Clay Sci. 2004, 26, 249–257. [Google Scholar] [CrossRef]
- Liu, J.; Song, S.; Cao, X.; Meng, Q.; Pu, H.; Wang, Y.; Liu, J. Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction. J. Rock Mech. Geotech. Eng. 2020, 12, 403–413. [Google Scholar] [CrossRef]
- Bian, X.; Cui, Y.-J.; Li, X.-Z. Voids effect on the swelling behaviour of compacted bentonite. Geotechnique 2019, 69, 593–605. [Google Scholar] [CrossRef]
- Ren, X.W.; Santamarina, J.C. The hydraulic conductivity of sediments: A pore size perspective. Eng. Geol. 2018, 233, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, D.T.; Gates, W.P. A test method to determine expected GCL porosity under specific site conditions. In Proceedings of the 7th International Congress on Environmental Geotechnics, Melbourne, Australia, 10–14 November 2014. [Google Scholar]
- Dachun, W.; Renquan, Z.; Yihong, S. The Basis of Hydrogeology; Geological Publishing House: Beijing, China, 1994. [Google Scholar]
- Zhang, G.W.; Zhang, H.Y.; Wang, J.F.; Zhou, L.; Liu, P.; Jiang, X. Laboratory investigation of self-healing properties on geo-synthetic clay liners with flaw. J. Environ. Prot. Sci. 2015, 41, 53–58. [Google Scholar]
- Jackson, R. The Dynamics of Fluidized Particles; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Ivorra, B. Application of the Laminar Navier–Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints: Implementation and Validation in Comsol Multiphysics. J. Sci. Comput. 2017, 74, 1163–1187. [Google Scholar] [CrossRef]
- Zimmerman, W.B.J. COMSOL Multiphysics Modeling and Analysis with Finite Element Method; China Communications Press: Beijing, China, 2007. [Google Scholar]
- McDowell, G.; De Bono, J. Relating Hydraulic Conductivity to Particle Size Using DEM. Int. J. Géoméch. 2021, 21, 06020034. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Liu, S.; Cai, J.; Guo, Y. Influence of freeze-thaw cycles on particle size distribution and swell index of ben-tonite in geosynthetic clay liner. J. Southeast Univ. 2015, 45, 964–968. [Google Scholar]
- Acikel, A.S.; Gates, W.P.; Singh, R.M.; Bouazza, A.; Rowe, R.K. Insufficient initial hydration of GCLs from some subgrades: Factors and causes. Geotext. Geomembr. 2018, 46, 770–781. [Google Scholar] [CrossRef]
- Holmboe, M.; Wold, S.; Jonsson, M. Porosity investigation of compacted bentonite using XRD profile modeling. J. Contam. Hydrol. 2012, 128, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C. A review of porosity and diffusion in bentonite. Posiva Work. Rep. 2013, 29, 2013. [Google Scholar]
- Lee, J.-M.; Shackelford, C.D. Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners. J. Geotech. Geoenviron. Eng. 2005, 131, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Scalia, J.; Benson, C.H.; Bohnhoff, G.L.; Edil, T.B.; Shackelford, C.D. Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated with Aggressive Inorganic Solutions. J. Geotech. Geoenviron. Eng. 2014, 140, 04013025. [Google Scholar] [CrossRef]
- Chen, J.N.; Benson, C.H.; Edil, T.B. Hydraulic conductivity of geosynthetic clay liners with sodium bentonite to coal combustion product leachates. J. Geotech. Geoenviron. 2018, 144, 04018008. [Google Scholar] [CrossRef]
- Bouazza, A.; Gates, W.P.; Abuel-Naga, H. Factors impacting liquid and gas flow through geosynthetic clay liners. Geosynth.–Recent Dev. Commem. Two Decades Geosynth. India 2006, 9, 119–146. [Google Scholar]
- Ren, X.; Zhao, Y.; Deng, Q.; Kang, J.; Li, D.; Wang, D. A relation of hydraulic conductivity—Void ratio for soils based on Kozeny-Carman equation. Eng. Geol. 2016, 213, 89–97. [Google Scholar] [CrossRef]
- Hong, B.; Li, X.; Wang, L.; Li, L.; Xue, Q.; Meng, J. Using the effective void ratio and specific surface area in the kozeny–carman equation to predict the hydraulic conductivity of loess. Water 2019, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.Y.; Benson, C.H.; Edil, T.B. Hydraulic conductivity and cation exchange in non-prehydrated and prehydrated bentonite permeated with weak inorganic salt solutions. Clays Clay Miner. 2004, 52, 661–679. [Google Scholar] [CrossRef]
The Initial Mobile Porosity | The Particle Size (mm) | |||
---|---|---|---|---|
0.02 | 0.08 | 0.2 | 1.0 | |
0.4 | 1 | 1 | 1 | 1 |
0.5 | 1 | 1 | 1 | 1 |
0.6 | 1 | 1 | 1 | 1 |
nf | n0 | β |
---|---|---|
0.025 | 0.4 | 2.2 × 10−6 |
0.025 | 0.5 | 2.6 × 10−6 |
0.025 | 0.6 | 3.3 × 10−6 |
0.01 | 0.4 | 1.4 × 10−7 |
0.01 | 0.5 | 1.7 × 10−7 |
0.01 | 0.6 | 2.1 × 10−7 |
0.0025 | 0.4 | 2.2 × 10−9 |
0.0025 | 0.5 | 2.6 × 10−9 |
0.0025 | 0.6 | 3.3 × 10−9 |
Literature | Initial Particle Size (d0)/mm | Initial Mobile Porosity (n0) | Chemical Solution | Ionic Strength (mol/L) |
---|---|---|---|---|
Jo [2] | 0.5 | 0.416 | 0.1 M NaCl | 0.1 |
1.0 M NaCl | 1.0 | |||
0.1 M KCl | 0.1 | |||
1.0 M KCl | 1.0 | |||
0.025 M MgCl2 | 0.015 | |||
0.1 M MgCl2 | 0.3 | |||
1 M MgCl2 | 3 | |||
0.1 M ZnCl2 | 0.3 | |||
1.0 M ZnCl2 | 3 | |||
0.01 M LaCl3 | 0.06 | |||
0.025 M LaCl3 | 0.15 | |||
0.1 M LaCl3 | 0.6 | |||
Lee [42] | 0.5 | 0.4 | 0.005 M CaCl2 | 0.015 |
0.01 M CaCl2 | 0.03 | |||
0.1 M CaCl2 | 0.3 | |||
0.5 M CaCl2 | 1.5 | |||
Scalia [43] | 0.5 | 0.4 | 0.02 M CaCl2 | 0.06 |
0.05 M CaCl2 | 0.15 | |||
0.2 M CaCl2 | 0.6 | |||
Chen [44] | 1 | 0.5 | - | 0.0395 |
- | 0.0968 | |||
0.3 | 0.5 | - | 0.048 | |
- | 0.178 | |||
- | 0.755 |
Literature | Initial Particle Size (d0)/mm | Initial Mobile Porosity (n0) | Chemical Solution | Ionic Strength (mol/L) |
---|---|---|---|---|
Chen [44] | 1/0.3 | 0.5 | - | 0.0395 |
- | 0.0968 | |||
- | 0.048 | |||
- | 0.178 | |||
- | 0.755 | |||
Katsumi [6] | 0.075 | 0.4 | 0.2 M KCl | 0.10 |
0.5 M KCl | 0.25 | |||
1.0 M KCl | 0.50 | |||
0.2 M NaCl | 0.20 | |||
0.5 M NaCl | 0.50 | |||
1.0 M NaCl | 1.00 | |||
0.1 M CaCl2 | 0.10 | |||
0.25 M CaCl2 | 0.25 | |||
0.50 M CaCl2 | 0.50 | |||
Jo [48] | 0.2 | 0.4 | 0.1 M KCl | 0.1 |
0.01 M CaCl2 | 0.06 | |||
0.04 M CaCl2 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Sun, R.; Chu, C.-X.; Karen, M.; Nasser, M. A Numerical Study of Chemical Compatibility of GCLs. Appl. Sci. 2022, 12, 2182. https://doi.org/10.3390/app12042182
Hou J, Sun R, Chu C-X, Karen M, Nasser M. A Numerical Study of Chemical Compatibility of GCLs. Applied Sciences. 2022; 12(4):2182. https://doi.org/10.3390/app12042182
Chicago/Turabian StyleHou, Juan, Rui Sun, Chen-Xi Chu, Mpundu Karen, and Marem Nasser. 2022. "A Numerical Study of Chemical Compatibility of GCLs" Applied Sciences 12, no. 4: 2182. https://doi.org/10.3390/app12042182
APA StyleHou, J., Sun, R., Chu, C. -X., Karen, M., & Nasser, M. (2022). A Numerical Study of Chemical Compatibility of GCLs. Applied Sciences, 12(4), 2182. https://doi.org/10.3390/app12042182