Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Soil and Sediment Sampling
2.3. Sample Processing
2.4. Statistics
3. Results
3.1. Sample Characterization
3.2. Trace Metal Enrichment
3.3. Trace Metal Mobility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talsperren in Deutschland. Available online: www.talsperren.net/index.html (accessed on 15 December 2021).
- Speckhann, G.A.; Kreibich, H.; Merz, B. Inventory of dams in Germany. Earth Syst. Sci. Data 2021, 13, 731–740. [Google Scholar] [CrossRef]
- DTK Deutsches Talsperren Kommittee (Ed.) Talsperren in Deutschland; Springer Viehweg: Wiesbaden, Germany, 2013. [Google Scholar]
- Wasser- und Schifffahrtsamt Hann. Münden (Ed.) Festschrift 100 Jahre Edertalsperre. Available online: https://izw.baw.de/publikationen/pressekonferenzen/0/2014_Festschrift_100_Jahre_Edertalsperre.pdf (accessed on 15 December 2021).
- Streetz, M.; Humbsch, M.; Haufe, H. Die Instandhaltung der Talsperre Klingenberg. Tech. Denkmale Sachs. Arb. Des Landesamtes Für Denkmalpfl. Sachs. 2017, 27, 80–89. [Google Scholar]
- The European Parliament and the Council of the European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off. J. Eur. Communities 2008, L312, 3–30. [Google Scholar]
- Schleiss, A.; De Cesare, G.; Althaus, J.J. Verlandung der Stauseen gefährdet die nachhaltige Nutzung der Wasserkraft. Wasser Energ. Luft 2010, 102, 31–40. [Google Scholar]
- Terêncio, D.P.S.; Cortes, R.M.V.; Pacheco, F.A.L.; Moura, J.P.; Fernandes, L.F.S. A method for estimating the risk of dam reservoir silting in fire-prone watersheds: A study in Douro River, Portugal. Water 2020, 12, 2959. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Palanques, A.; Grimalt, J.; Belzunces, M.; Estrada, F.; Puig, P.; Guillén, G. Massive accumulation of highly polluted sedimentary deposits by river damming. Sci. Total Environ. 2014, 497–498, 369–381. [Google Scholar] [CrossRef]
- Namieśnik, J.; Rabajczik, A. Land development and forms of heavy metal occurrence (Zn, Cd, Pb) in Polish rivers. Pol. J. Environ. Stud. 2011, 20, 141–155. [Google Scholar]
- Ciszewski, D.; Grygar, T.M. A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air Soil Pollut. 2016, 227, 239. [Google Scholar] [CrossRef] [Green Version]
- Bel Hadj Ali, I.; Lafhaj, Z.; Bouassida, M.; Said, I. Characterization of Tunisian marine sediments in Rades and Gabes harbors. Int. J. Sed. Res. 2014, 29, 391–401. [Google Scholar] [CrossRef]
- Bergmann, H.; Maass, V. Sediment regulations and monitoring programmes in Europe. Sustain. Manag. Sediment Resour. 2007, 3, 207–231. [Google Scholar]
- Federal Soil Protection Ordinance (Bundes-Bodenschutz- und Altlastenverordnung; BBodSchV). Bundesgesetzblatt; Bundesanzeiger Verlag: Bonn, Germany, 1999; Teil I, Nr. 36; pp. 1554–1582. [Google Scholar]
- Kulbat, E.; Sokołowska, A. Speciation of heavy metals in bottom sediments of a drinking water reservoir for Gdańsk, Poland—Changes over the 14 years. Desalin. Water Treat. 2020, 179, 252–262. [Google Scholar] [CrossRef]
- Duscher, K.; Hoelzmann, P. Deposition of atmospherically deposited heavy metals in the sediment of surface waters with acidified catchment areas. Case study drinking water dam Souš (Czech Republic). Die Erde 1999, 130, 29–46. [Google Scholar]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Ruppert, H.; Muramatsu, Y.; Schneider, J. Reservoir sediments—A witness of mining and industrial development (Malter reservoir, eastern Erzgebirge, Germany). Environ. Geol. 2000, 39, 1341–1351. [Google Scholar] [CrossRef]
- Faure, A.; Smith, A.; Coudray, C.; Anger, B.; Colina, H.; Moulin, I.; Thery, F. Ability of two dam fine-grained sediments to be used in cement industry as raw material for clinker production and as pozzolanic additional constituent of portland-composite cement. Waste Biomass Valor 2017, 8, 2141–2163. [Google Scholar] [CrossRef] [Green Version]
- Walter, R. Geologie von Mitteleuropa, 7th ed.; Schweitzerbart: Stuttgart, Germany, 2007. [Google Scholar]
- Meschede, M.; Warr, L.N. Geology of Germany; Springer: Cham, Switzerland, 2019; 304p. [Google Scholar]
- Mainz Landesamt für Geologie und Bergbau Rheinland-Pfalz (Ed.) Geologie von Rheinland-Pfalz; Schweitzerbart: Stuttgart, Germany, 2005; 400p. [Google Scholar]
- Pälchen, W.; Walter, H. (Eds.) Geologie von Sachsen I. Geologischer Bau und Entwicklungsgeschichte, 2nd ed.; Schweitzerbart: Stuttgart, Germany, 2011; 537p. [Google Scholar]
- Sebastian, U. Die Geologie des Erzgebirges; Springer Spektrum: Berlin/Heidelberg, Germany, 2013; 268p. [Google Scholar]
- König, D.; Egidi, H.; Herrmann, M.; Schultheiß, J.; Tempel, M.; Zemke, J.J. Der Nationalpark Hunsrück-Hochwald—Natur-räumliche Ausstattung und anthropogene Überprägung. In Der Nationalpark Hunsrück-Hochwald; König, D., Graafen, R., Eds.; Koblenzer Geographisches Kolloquium 39, Sonderheft; University of Koblenz-Landau, Institute for Integrated Natural Sciences, Department of Geography: Koblenz, Germany, 2017; pp. 5–40. [Google Scholar]
- Hahn, J.; Müller, F.; Zemke, J.J. Böden im Nationalpark Hunsrück-Hochwald und ihre geologischen Funktionen. In Der Nationalpark Hunsrück-Hochwald; König, D., Graafen, R., Eds.; Koblenzer Geographisches Kolloquium 39, Sonderheft; University of Koblenz-Landau, Institute for Integrated Natural Sciences, Department of Geography: Koblenz, Germany, 2017; pp. 73–97. [Google Scholar]
- Hunger, W. The forest soils of the Ore Mountains. Mitt. Des Ver. Für Forstl. Standortskunde Und Forstpflanzenzüchtung 1994, 37, 17–22. [Google Scholar]
- German Weather Service. Long-Term Mean Values 1980–2010. Table B: Mean Values for the Weather Stations at the End of the Reference Period. 2021. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (accessed on 30 October 2021).
- German Weather Service. Long-Term Mean Values 1961–1990. Table B: Mean Values for the Weather Stations at the End of the Reference Period. 2021. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (accessed on 30 October 2021).
- Yang, H.; Turner, S.; Rose, N.L. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England. Environ. Pollut. 2016, 219, 1092–1101. [Google Scholar] [CrossRef] [Green Version]
- Hahn, J.; Opp, C.; Ganzenmüller, R.; Ewert, A.; Schneider, B.; Zitzer, N.; Laufenberg, G. Catchment soils as a factor of trace metal accumulation in sediments of the reservoir Klingenberg (eastern Ore Mountains, Germany). J. Environ. Sci. 2019, 86, 1–14. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Report 106; FAO: Rome, Italy, 2015; p. 106. [Google Scholar]
- Sludge, Treated Biowaste, Soil and Refuse—Determination of total organic carbon (TOC) by dry combustion. In German Version DIN EN 15936; DIN (German Institute for Standardization), Beuth: Berlin, Germany, 2012.
- Soil Quality: Determination of pH-Value. In DIN ISO 10390; DIN (Deutsches Institut für Normung), Beuth: Berlin, Germany, 2005.
- Soil Quality: Extraction of Trace Elements Soluble in Aqua Regia. In DIN ISO 11466; DIN (German Institute for Standardization), Beuth: Berlin, Germany, 1995.
- Soil Quality: Extraction of Trace Elements with Ammonium Nitrate Solution. In DIN 19730; DIN (German Institute for Standardization), Beuth: Berlin, Germany, 1997.
- Soil quality: Determination of Trace Elements in Soil Extracts by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In DIN ISO 22036; DIN (German Institute for Standardization), Beuth: Berlin, Germany, 2009.
- Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of 62 Elements. In DIN EN ISO 17294-2; DIN (German Institute for Standardization), Beuth: Berlin, Germany, 2017.
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Pourabadehei, M.; Mulligan, C.N. Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ. Pollut. 2016, 213, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Salminen, R. Geochemical Atlas of Europe, Part 1, Background Information, Methodology and Maps. Geological Survey of Finland, Espoo. 2005. Available online: http://weppi.gtk.fi/publ/foregsatlas/index.php (accessed on 30 November 2021).
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.; Zeng, G.; Jiang, M.; Yang, Z.; Cui, F.; Zhu, M.; Shen, L.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, X.; Jian, H.; Chen, H.; Yu, Z. Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. Int. J. Environ. Res. Public Health 2015, 12, 6725–6744. [Google Scholar] [CrossRef]
- Krishna, A.K.; Mohan, K.R. Metal contamination and their distribution in different grain size fractions of sediments in an industrial development area. Bull. Environ. Contam. Toxicol. 2013, 90, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.; Zils, V.; Berresheim, L. Joint recording of contamination status, multi-element dynamics, and source identification on a sub-catchment scale: The example Lahn River (Germany). Sci. Total Environ. 2021, 762, 143110. [Google Scholar] [CrossRef] [PubMed]
- Vollprecht, D.; Riegler, C.; Ahr, F.; Stuhlpfarrer, S.; Wellacher, M. Sequential chemical extraction and mineralogical bonding of metals from Styrian soils. Int. J. Environ. Sci. Technol. 2020, 17, 3663–3676. [Google Scholar] [CrossRef] [Green Version]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1962, 72, 175–192. [Google Scholar] [CrossRef]
- Quinton, J.N.; Catt, J.N. Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. Environ. Sci. Technol. 2007, 41, 3495–3500. [Google Scholar] [CrossRef]
- Byrne, P.; Taylor, K.G.; Hudson-Edwards, K.A.; Barrett, J.E.S. Speciation and potential long-term behaviour of chromium in urban sediment particulates. J. Soils Sediments 2017, 17, 2666–2676. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.M.; Alessi, D.S.; Tack, F.M.G.; Sik Ok, Y.; Kim, K.H.; Gustafsson, J.P.; Sparks, D.L.; Rinklebe, J. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications—A review. Adv. Colloid Interface Sci. 2019, 265, 1–13. [Google Scholar] [CrossRef]
- Hahn, J.; Opp, C.; Evgrafova, A.; Groll, M.; Zitzer, N.; Laufenberg, G. Impacts of dam draining on the mobility of heavy metals and arsenic in water and basin bottom sediments of three studied dams in Germany. Sci. Total Environ. 2018, 640–641, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, T.; Reichel, S.; Müller, I.; Jordan, I.; Hube, D.; Eurola, M.; Loukola-Ruskeeniemi, K. Arsenic in agro-ecosystems under anthropogenic pressure in Germany and France compared to a geogenic as region in Finland. J. Geochem. Explor. 2020, 217, 106606. [Google Scholar] [CrossRef]
- Ulrich, K.U.; Paul, L.; Hupfer, M. Pollutants in the sediments of water reservoirs. Wasser Boden 2000, 52, 27–32. [Google Scholar]
- Liang, J.; Mao, J. Source analysis of global anthropogenic lead emissions: Their quantities and species. Environ. Sci. Pollut. Res. 2015, 22, 7129–7138. [Google Scholar] [CrossRef]
- Utermann, J.; Aydın, C.T.; Bischoff, N.; Böttcher, J.; Eickenscheidt, N.; Gehrmann, J.; König, N.; Scheler, B.; Stange, F.; Wellbrock, N. Heavy metal stocks and concentrations in forest soils. In Status and Dynamics of Forests in Germany. Ecological Studies (Analysis and Synthesis) 237; Wellbrock, N., Bolte, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Scheid, S.; Günthardt-Goerg, M.S.; Schulin, R.; Nowack, B. Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. Eur. J. Soil Sci. 2009, 60, 613–621. [Google Scholar] [CrossRef]
- Hahn, J.; Mann, B.; Bange, U.; Kimmel, M. Horizon-specific effects of heavy metal mobility on nitrogen binding forms in forest soils near a historic smelter (Germany). Geoderma 2019, 355, 113895. [Google Scholar] [CrossRef]
- Herms, U.; Brümmer, G. Factors of heavy metal solubility and binding in soils. J. Plant Nutr. Soil Sci. 1984, 147, 400–424. [Google Scholar]
- Blake, L.; Goulding, K.W.T. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 2002, 240, 235–251. [Google Scholar] [CrossRef]
- Ulrich, K.U.; Paul, K.; Meybohm, A. Response of drinking-water reservoir ecosystems to decreased acidic atmospheric deposition in SE Germany: Trends of chemical reversal. Environ. Pollut. 2006, 141, 42–53. [Google Scholar] [CrossRef]
- Szarek-Gwiazda, E.; Mazurkiewicz-Boron, G. Influence of cadmium and lead partitioning in water and sediment on their deposition in the sediment of a eutrophic dam reservoir. Oceanol. Hydrobiol. Stud. 2006, 35, 141–157. [Google Scholar]
- Van den Berg, G.A.; Loch, J.P.G.; van der Heijdt, L.M.; Zwolsman, J.J.G. Mobilization of heavy metals in contaminated sediments in the River Meuse, the Netherlands. Water Air Soil Pollut. 1999, 116, 567–586. [Google Scholar] [CrossRef]
- Baran, A.; Mierzwa-Hersztek, M.; Gondek, K.; Tarnawski, M.; Szara, M.; Gorczyca, O.; Koniarz, T. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 2019, 41, 2893–2910. [Google Scholar] [CrossRef] [Green Version]
- Rinklebe, J.; Shaheen, S.M. Redox chemistry of nickel in soils and sediments: A review. Chemosphere 2017, 179, 265–278. [Google Scholar] [CrossRef] [PubMed]
Reservoir | Einsiedel | Lehnmühle | Steinbach | Bitburg | Breitenbach | Obernau |
---|---|---|---|---|---|---|
Constr. (years) | 1891–1894 | 1927–1931 | 1963–1966 | 1970–1972 | 1953–1956 | 1967–1972 |
Vol. (Mill. m³) | 0.3 | 21.9 | 4.5 | 1.2 | 7.8 | 14.8 |
Prec. (mm) | 701 a | 664 b | 517 c | 861 d | 783 e | 783 e |
Temp. (°C) | 8.5 a | 9.4 b | 9.5 c | 9.0 d | 9.2 e | 9.2 e |
Elev. (m a.s.l.) | 384 | 518 | 465 | 256 | 370 | 370 |
Geology | phyllite | gneiss | shale, quartzite | shale, sand-, limest. | shale, sandst. | shale, sandst. |
Size (km²) | 2.7 | 60.4 | 14.6 | 330 | 4.1 | 11.3 |
TOC | Nt | C/N | pH | S | U | C | Al | As | Cd | Cr | Fe | Mn | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RS Mean Median SD | 4.44 4.37 1.11 | 0.44 0.43 0.11 | 10.2 9.95 1.67 | 5.89 5.98 0.66 | 18.9 17.8 10.3 | 73.2 76.2 15.9 | 4.83 4.89 2.25 | 36.3 25.0 20.1 | 46.1 15.0 67.4 | 4.03 1.84 5.64 | 41.8 39.1 12.8 | 38.2 38.1 17.1 | 7764 1171 12,435 | 78.6 81.2 33.9 | 121 88.3 70.4 | 46.8 42.6 16.6 | 343 299 194 |
SS Mean Median SD | 4.07 3.33 3.53 | 0.25 0.22 0.17 | 15.6 14.8 5.34 | 5.64 5.55 0.61 | 58.0 63.1 18.7 | 35.8 32.7 15.9 | 2.62 1.61 2.20 | 16.7 13.6 13.3 | 11.9 8.41 13.3 | 1.61 0.46 4.21 | 27.1 25.8 15.4 | 28.3 28.0 11.7 | 1654 1238 1813 | 69.2 59.9 62.1 | 90.6 40.8 279 | 26.5 22.9 19.3 | 131 107 107 |
CS Mean Median SD | 5.84 3.91 6.37 | 0.35 0.26 0.28 | 14.8 14.2 3.68 | 3.84 3.78 0.59 | 33.1 34.2 18.2 | 58.7 60.3 15.5 | 6.54 4.56 5.27 | 19.2 13.3 17.9 | 15.0 10.2 23.1 | 0.43 0.27 0.51 | 27.6 24.0 17.4 | 25.7 28.6 11.6 | 756 704 553 | 30.6 29.9 15.3 | 87.9 52.8 84.9 | 29.5 25.2 22.5 | 76.0 73.3 51.9 |
Asympt. Sig | Al | As | Cd | Cr | Fe | Mn | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Conc. | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 |
EF | - | 0.74 | ≤0.01 | ≤0.01 | - | ≤0.01 | ≤0.01 | 0.13 | 0.29 | ≤0.01 |
As | EF_As | Cd | EF_Cd | Cr | EF_Cr | Mn | EF_Mn | Ni | EF_Ni | Pb | EF_Pb | V | EF_V | Zn | EF_Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC | −0.02 | −0.01 | 0.34 ** | 0.42 ** | −0.00 | 0.03 | −0.14 | −0.20 * | −0.02 | −0.08 | 0.32 ** | 0.36 ** | 0.04 | 0.13 | 0.06 | 0.11 |
Nt | 0.24 ** | 0.07 | 0.54 ** | 0.51 ** | 0.23 ** | −0.06 | 0.11 | −0.01 | 0.24 ** | 0.07 | 0.49 ** | 0.37 ** | 0.29 ** | 0.21 * | 0.35 ** | 0.31 ** |
pH | 0.13 | −0.02 | 0.49 ** | 0.44 ** | 0.23 ** | −0.06 | 0.58 ** | 0.51 ** | 0.64 ** | 0.58 ** | 0.03 | −0.09 | 0.21 ** | 0.04 | 0.59 ** | 0.67 ** |
Al | 0.74 ** | - | 0.46 ** | - | 0.91 ** | - | 0.36 ** | - | 0.52 ** | - | 0.37 ** | - | 0.89 ** | - | 0.64 ** | - |
Fe | 0.63 ** | 0.04 | 0.39 ** | 0.04 | 0.74 ** | −0.25 ** | 0.63 ** | 0.25 ** | 0.70 ** | 0.19* | 0.41 ** | −0.10 | 0.70 ** | −0.16 * | 0.62 ** | 0.19 * |
n | 140 | 139 | 140 | 139 | 140 | 139 | 140 | 139 | 140 | 139 | 140 | 139 | 140 | 139 | 140 | 139 |
CS (Air–Dried) | RS (Field Fresh) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Mn | Ni | Pb | V | Zn | As | Cd | Cr | Mn | Ni | Pb | V | Zn | |
Mean (%) | 0.76 | 48.1 | 0.33 | 42.5 | 11.2 | 5.97 | 0.17 | 20.1 | 0.64 | 0.04 | 0.01 | 13.1 | 0.48 | 0.04 | 0.01 | 0.11 |
Median (%) | 0.36 | 47.1 | 0.25 | 32.7 | 5.75 | 3.95 | 0.06 | 11.0 | 0.32 | 0.02 | 0.01 | 14.1 | 0.33 | 0.02 | 0.01 | 0.08 |
SD | 1.13 | 25.5 | 0.30 | 33.4 | 12.3 | 7.66 | 0.28 | 21.8 | 0.97 | 0.04 | 0.00 | 7.49 | 0.30 | 0.06 | 0.01 | 0.13 |
n | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, J.; Bui, T.; Kessler, M.; Weber, C.J.; Beier, T.; Mildenberger, A.; Traub, M.; Opp, C. Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions. Appl. Sci. 2022, 12, 2277. https://doi.org/10.3390/app12052277
Hahn J, Bui T, Kessler M, Weber CJ, Beier T, Mildenberger A, Traub M, Opp C. Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions. Applied Sciences. 2022; 12(5):2277. https://doi.org/10.3390/app12052277
Chicago/Turabian StyleHahn, Jens, Thanh Bui, Mathias Kessler, Collin J. Weber, Thomas Beier, Antje Mildenberger, Martina Traub, and Christian Opp. 2022. "Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions" Applied Sciences 12, no. 5: 2277. https://doi.org/10.3390/app12052277
APA StyleHahn, J., Bui, T., Kessler, M., Weber, C. J., Beier, T., Mildenberger, A., Traub, M., & Opp, C. (2022). Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions. Applied Sciences, 12(5), 2277. https://doi.org/10.3390/app12052277