Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Setup
2.3. Finite Element Method
3. Results
3.1. Identification of Strain-Rate-Dependant Flow Curves
3.2. Numerical Simulation of the Tensile Test and Experimental Validation of Force and Temperature Values
4. Discussion
5. Conclusions
- Taking into account the actual strain rate for each of the tests performed is necessary since this value is often not the same as the set value for the machine.
- The plastic material model must take into account a range of strain rates exceeding the nominal strain rate of the test by several times in order to reproduce localization effects with sufficient accuracy.
- The sophisticated choice of the measuring point allows recording the maximum temperature in the fracture region with a high-speed pyrometer for strain rates of up to several hundred per second.
- The results of the experiment and simulation are well comparable using the provided material model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Avrillaud, G.; Mazars, G.; Cantergiani, E.; Beguet, F.; Cuq-Lelandais, J.-P.; Deroy, J. Examples of How Increased Formability through High Strain Rates Can Be Used in Electro-Hydraulic Forming and Electromagnetic Forming Industrial Applications. JMMP 2021, 5, 96. [Google Scholar] [CrossRef]
- Psyk, V.; Scheffler, C.; Stalmann, A.; Goede, M. Shaping of Sharp-Edged Design Elements by Electromagnetic Forming. In Forming the Future; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1315–1327. [Google Scholar]
- Rohatgi, A.; Stephens, E.V.; Soulami, A.; Davies, R.W.; Smith, M.T. High-Strain-Rate Forming of Aluminum and Steel Sheets for Automotive Applications; Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 2010. [Google Scholar]
- Li, Z.; Voisin, T.; McKeown, J.T.; Ye, J.; Braun, T.; Kamath, C.; King, W.E.; Wang, Y.M. Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. Int. J. Plast. 2019, 120, 395–410. [Google Scholar] [CrossRef]
- Boyce, B.L.; Dilmore, M.F. The dynamic tensile behavior of tough, ultrahigh-strength steels at strain-rates from 0.0002 s−1 to 200 s−1. Int. J. Impact Eng. 2009, 36, 263–271. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater. 2015, 88, 170–179. [Google Scholar] [CrossRef]
- Pouya, M.; Winter, S.; Fritsch, S.; Wagner, M.F.-X. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates. IOP Conf. Ser. Mater. Sci. Eng. 2017, 181, 12022. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984, 32, 157–169. [Google Scholar] [CrossRef]
- Praveen Kumar, A.; Shrivaathsav, S. Influence of forming parameters on the crash performance of capped cylindrical tubes using LS-DYNA follow-on simulations. Int. J. Interact. Des. Manuf. (IJIDeM) 2019, 13, 1215–1232. [Google Scholar] [CrossRef]
- Feucht, M.; Neukamm, F.; Haufe, A.A. A phenomenological damage model to predict material failure in crashworthiness applications. In A Phenomenological Damage Model to Predict Material Failure in Crashworthiness Applications; Recent developments and innovative applications in computational mechanics, Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 143–153. [Google Scholar]
- Andrade, F.X.C.; Feucht, M.; Haufe, A.; Neukamm, F. An incremental stress state dependent damage model for ductile failure prediction. Int. J. Fract. 2016, 200, 127–150. [Google Scholar] [CrossRef]
- Winter, S.; Nestler, M.; Galiev, E.; Hartmann, F.; Psyk, V.; Kräusel, V.; Dix, M. Adiabatic Blanking: Influence of Clearance, Impact Energy, and Velocity on the Blanked Surface. JMMP 2021, 5, 35. [Google Scholar] [CrossRef]
- Psyk, V.; Scheffler, C.; Tulke, M.; Winter, S.; Guilleaume, C.; Brosius, A. Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulation. JMMP 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Boz, Z.; Erdogdu, F.; Tutar, M. Effects of mesh refinement, time step size and numerical scheme on the computational modeling of temperature evolution during natural-convection heating. J. Food Eng. 2014, 123, 8–16. [Google Scholar] [CrossRef]
- Li, Y.N.; Karr, D.G.; Wang, G. Mesh size effects in simulating ductile fracture of metals. In Proceedings of the 10th International Symposium on Practical Design on Ships and Other Floating Structures, Houston, TX, USA, 1–5 October 2007; pp. 247–254. [Google Scholar]
- Lorenz, D.; Haufe, A. Recent advances and new developments in hot forming simulation with LS-DYNA. In Proceedings of the Numisheet2008 Proceedings, Interlaken, Switzerland, 1–5 September 2008. [Google Scholar]
- Gao, Y.; Wagoner, R.H. A simplified model of heat generation during the uniaxial tensile test. Metall. Trans. A 1991, 18, 1001–1009. [Google Scholar] [CrossRef]
- Raghavan, K.S.; Wagoner, R.H. Combined influence of geometric defects and thermal gradients on tensile ductility. Metall. Trans. A 1987, 18, 2143–2150. [Google Scholar] [CrossRef]
- Knysh, P.; Korkolis, Y.P. Determination of the fraction of plastic work converted into heat in metals. Mech. Mater. 2015, 86, 71–80. [Google Scholar] [CrossRef]
- Majidi, O.; Barlat, F.; Korkolis, Y.P.; Fu, J.; Lee, M.-G. Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet. Met. Mater. Int. 2016, 22, 968–973. [Google Scholar] [CrossRef]
- Andrade, F.; Feucht, M. A Comparison of Damage and Failure Models for the Failure Prediction of Dual-Phase Steels. In Proceedings of the 11th European LS-DYNA Conference, Salzburg, Austria, 9–11 May 2017. [Google Scholar]
- Neukamm, F.; Feucht, M.; Haufe, A.; Roll, K. On closing the constitutive gap between forming and crash simulation. In Proceedings of the 10th International LS-DYNA Users Conference, Dearborn, MI, USA, 8 May 2008; pp. 12–21. [Google Scholar]
- Volk, W.; Suh, J. Prediction of formability for non-linear deformation history using generalized forming limit concept (GFLC). In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; pp. 556–561. ISBN 0735411956. [Google Scholar]
- Taylor, G.I.; Quinney, H. The latent energy remaining in a metal after cold working. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1934, 143, 307–326. [Google Scholar]
- Żaba, K.; Trzepieciński, T.; Puchlerska, S.; Noga, P.; Balcerzak, M. Coupled Thermomechanical Response Measurement of Deformation of Nickel-Based Superalloys Using Full-Field Digital Image Correlation and Infrared Thermography. Materials 2021, 14, 2163. [Google Scholar] [CrossRef]
Alloy Code | Composition (wt %) | |||||||
---|---|---|---|---|---|---|---|---|
DC06 | C | Si | Mn | S | Al | Ti | Nb | Fe |
0.007 | 0.017 | 0.122 | 0.008 | 0.06 | 0.06 | 0.01 | bal. |
Grade | Rp0.2 (MPa) | Rm (MPa) | A80 (%) |
---|---|---|---|
DC06 | 137 | 291 | 41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiev, E.; Winter, S.; Reuther, F.; Psyk, V.; Tulke, M.; Brosius, A.; Kräusel, V. Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations. Appl. Sci. 2022, 12, 2299. https://doi.org/10.3390/app12052299
Galiev E, Winter S, Reuther F, Psyk V, Tulke M, Brosius A, Kräusel V. Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations. Applied Sciences. 2022; 12(5):2299. https://doi.org/10.3390/app12052299
Chicago/Turabian StyleGaliev, Elmar, Sven Winter, Franz Reuther, Verena Psyk, Marc Tulke, Alexander Brosius, and Verena Kräusel. 2022. "Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations" Applied Sciences 12, no. 5: 2299. https://doi.org/10.3390/app12052299
APA StyleGaliev, E., Winter, S., Reuther, F., Psyk, V., Tulke, M., Brosius, A., & Kräusel, V. (2022). Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations. Applied Sciences, 12(5), 2299. https://doi.org/10.3390/app12052299