Effect of the Zirconia Particle Size on the Compressive Strength of Reticulated Porous Zirconia-Toughened Alumina
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the ZTA Slurry by Coarse Zirconia Particles
2.2. Preparation of the ZTA Slurry by Fine Zirconia Particles
2.3. Preparation of a Reticulated Porous ZTA Specimen
2.4. Characterization of a Reticulated Porous ZTA Specimen
3. Results
3.1. Reticulated Porous ZTA Specimen Prepared by Coarse Zirconia Particles
3.1.1. The Effect of the Solid Loading on the Reticulated Porous ZTA Specimen
3.1.2. The Effect of the Thickener on the Reticulated Porous ZTA Specimen
3.1.3. The Effect of the Sintering Temperature on the Reticulated Porous ZTA Specimen
3.1.4. The Effect of the Average Particle Size of ZTA on the Reticulated Porous ZTA Specimen
3.2. Reticulated Porous ZTA Specimen Prepared by Fine Zirconia Particles
3.2.1. The Effect of the Organic Binder on the Reticulated Porous ZTA Specimen
3.2.2. The Effect of the Thickener on the Reticulated Porous ZTA Specimen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pu, X.; Liu, X.; Qiu, F.; Huang, L. Novel method to optimize the structure of reticulated porous ceramics. J. Am. Ceram. Soc. 2004, 87, 1392–1394. [Google Scholar] [CrossRef]
- Ha, J.-H.; Lee, S.; Park, B.; Lee, J.; Song, I.-H. Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications. J. Aust. Ceram. Soc. 2020, 56, 1481–1491. [Google Scholar] [CrossRef]
- Saenkhumvong, E.; Karin, P.; Win, S.Z.; Sirivarocha, S.; Chollacoop, N.; Hanamura, K. Influence of V2O5 and AlF3 on Microstructure of Acicular Mullite Diesel Particulate Filter Along with Soot Oxidation Kinetics. Emiss. Control Sci. Technol. 2021, 7, 287–301. [Google Scholar] [CrossRef]
- Zakaria, Z.; Awang Mat, Z.; Abu Hassan, S.H.; Boon Kar, Y. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int. J. Energy Res. 2020, 44, 594–611. [Google Scholar] [CrossRef]
- Sinn, C.; Wentrup, J.; Pesch, G.R.; Thöming, J.; Kiewidt, L. Structure-heat transport analysis of periodic open-cell foams to be used as catalyst carriers. Chem. Eng. Res. Des. 2021, 166, 209–219. [Google Scholar] [CrossRef]
- Nawi, M.; Ahmad, A.; Hameed, M.; Ismail, M.; Azmi, W. Fabrication of SiC and Al2O3 foams by replica method for premixed porous burner application. AIP Conf. Proc. 2019, 2059, 020059. [Google Scholar] [CrossRef]
- Bugdaycia, M.; Baran, G. Effects of binding agents in the production of SiC ceramic foam filters with replica method. J. Ceram. Process. Res. 2021, 22, 510–516. [Google Scholar] [CrossRef]
- Shin, C.; Oh, S.-H.; Choi, J.-H.; Hwang, K.-T.; Han, K.-S.; Oh, S.-J.; Kim, J.-H. Synthesis of porous ceramic with well-developed mullite whiskers in system of Al2O3-Kaolin-MoO3. J. Mater. Res. Technol. 2021, 15, 1457–1466. [Google Scholar] [CrossRef]
- Shen, M.; Zhao, H.; Feng, W.; Luo, Y.; Chen, H.; Zheng, Y.; Ge, L.; Guo, L. Porous silicon nitride for scaffold material by direct forming with protective gelling. Ceram. Int. 2021, 47, 29342–29354. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, X.; You, J.; Peng, Z.; Zhang, S. Ceramic foams with highly open channel structure from direct foaming method in combination with hollow spheres as pore-former. J. Asian Ceram. Soc. 2021, 9, 24–29. [Google Scholar] [CrossRef]
- da Silva Aragão, V.T.; Silva, V.S.; de Carvalho, R.R.; Matos, R.S.; Ferreira, N.S.; de Araújo Melo, D.M.; Oliveira, R.M.P.B. Analyzing coarsening versus densification phenomenon present in partial sintering of Al2O3/TiO2 composites. J. Mater. Res. Technol. 2021, 15, 2711–2724. [Google Scholar] [CrossRef]
- Tabard, L.; Garnier, V.; Prud’Homme, E.; Courtial, E.-J.; Meille, S.; Adrien, J.; Jorand, Y.; Gremillard, L. Robocasting of highly porous ceramics scaffolds with hierarchized porosity. Addit. Manuf. 2021, 38, 101776. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, W.; Luo, Y.; Ma, Z.; Zhang, L.; Yue, Z. Microwave and terahertz properties of porous Ba4(Sm, Nd, Bi)28/3Ti18O54 ceramics obtained by sacrificial template method. J. Am. Ceram. Soc. 2021, 104, 5679–5688. [Google Scholar] [CrossRef]
- Biggemann, J.; Stumpf, M.; Fey, T. Porous Alumina Ceramics with Multimodal Pore Size Distributions. Materials 2021, 14, 3294. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Ahmad, S.; Latif, M.A.; Taib, H.; Ismail, A.F. Short review: Ceramic foam fabrication techniques for wastewater treatment application. Adv. Mater. Res. 2013, 795, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Smyrnova-Zamkova, M.Y.; Ruban, O.; Bykov, O.; Holovchuk, M.Y.; Mosina, T.; Khomenko, O.; Dudnik, E. The Influence of the ZrO2 Solid Solution Amount on the Physicochemical Properties of Al2O3–ZrO2–Y2O3–CeO2 Powders. Powder Metall. Met. Ceram. 2021, 60, 129–141. [Google Scholar] [CrossRef]
- Dhar, S.A.; Mumu, H.T.; Sarker, S.; Rashid, A.B. Influences of sintering time on the structures and mechanical properties of zirconia toughened alumina nanocomposites. Mater. Today 2021, 44, 1356–1360. [Google Scholar] [CrossRef]
- Yoon, J.-J.; Chun, S.-Y.; Hwang, J.-A.; Park, S.-Y.; Chun, M.-P. Effects of Particle Size of Al2O3 on the Mechanical Properties and Micro-Structures of Al2O3-3YSZ Composites. J. Korean Inst. Met. Mater. 2017, 30, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Kosmač, T.; Oblak, Č.; Jevnikar, P.; Funduk, N.; Marion, L. Strength and reliability of surface treated Y-TZP dental ceramics. J. Biomed. Mater. Res. 2000, 53, 304–313. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ra, S.; Kim, S.; Jeong, C.; Kim, H.; Lee, Y. The effect of ball-mill treatment on powder characteristics, compaction and sintering of UO2. Proc. Kor. Nuc. Soc. 2001, 12, 24–25. [Google Scholar]
- Lee, C.-Y.; Lee, S.; Ha, J.-H.; Lee, J.; Song, I.-H.; Moon, K.-S. The Effects of a Zirconia Addition on the Compressive Strength of Reticulated Porous Zirconia-Toughened Alumina. Appl. Sci. 2021, 11, 9326. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kang, H.-J. Effect of cellulose based water retention additives on mechanical properties of cement based mortar. Polym. Korea 2015, 39, 820–826. [Google Scholar] [CrossRef]
- Kim, S.-M.; Kim, K.-M.; Lee, K.-S.; You, C.-K.; Lee, Y.-K. Enhanced Strength of the Tissue Engineering Scaffold. J. Korea Res. Soc. Den. Mater. 2011, 38, 321–327. [Google Scholar] [CrossRef]
- Ha, J.-H.; Lee, S.; Choi, J.R.; Lee, J.; Song, I.-H.; Lee, S.J.; Choi, J. Development of a carbon-coated reticulated porous alumina material with tailored structural properties for potential radar-absorption applications. Ceram. Int. 2017, 43, 16924–16930. [Google Scholar] [CrossRef]
- Lee, M.; Do, H.; Park, J.; Lee, J.; Kim, M.; Park, S.; Kim, W.; Hwang, J.; Kim, H. Effect of Temperature in Post-Treatment Process of Zirconia 3D Printing. J. Weld. Jt. 2021, 39, 59–66. [Google Scholar] [CrossRef]
- Sarraf, H.; Qian, Z.; Škarpová, L.; Wang, B.; Herbig, R.; Maryška, M.; Bartovska, L.; Havrda, J.; Anvari, B. Direct Probing of Dispersion Quality of ZrO2 Nanoparticles Coated by Polyelectrolyte at Different Concentrated Suspensions. Nanoscale Res. Lett. 2015, 10, 456. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Shin, H.; Shim, J.; Cho, W.; Oh, J. Development of High-Performance Porous Ceramic Membrane. Ceramist 2001, 4, 47–55. [Google Scholar]
- Lee, C.-Y.; Lee, S.; Ha, J.-H.; Lee, J.; Song, I.-H.; Moon, K.-S. Effect of the processing conditions of reticulated porous alumina on the compressive strength. J. Korean Ceram. Soc. 2021, 58, 495–506. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C.Y.; Ha, J.-H.; Lee, J.; Song, I.-H.; Kwon, S.-H. Enhancing compressive strength of reticulated porous alumina by optimizing processing conditions. Appl. Sci. 2021, 11, 4517. [Google Scholar] [CrossRef]
- Li, C.M.; Jung, K.I.; Kim, C.; Kim, T.W.; Yim, H.J.; Lee, K.S. A Study on the Microstructure and Controlling of Nano-size Grain. J. Mech. Sci. Technol. 2006, 11, 26–29. (In Korean) [Google Scholar]
- Cesarano, J., III; Aksay, I.A.; Bleier, A. Stability of aqueous α-Al2O3 suspensions with poly (methacrylic acid) polyelectrolyte. J. Am. Ceram. Soc. 1988, 71, 250–255. [Google Scholar] [CrossRef]
- Qin, W.; Guan, K.; Lei, B.; Liu, Y.; Peng, C.; Wu, J. One-step coating and characterization of α-Al2O3 microfiltration membrane. J. Membr. Sci. Res. 2015, 490, 160–168. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kang, J.-B.; Bae, S.-H. Enhanced Dispersion of Yttria Stabilized Zirconia by Mixed Dispersants Containing Carboxyl Group in Aqueous System. J. Mater. Res. 2018, 28, 82–88. [Google Scholar] [CrossRef]
- Sun, Y.-N. Pyrolysis Behavior of Polymeric Binders. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1988. [Google Scholar]
- Jun, I.-K.; Koh, Y.-H.; Song, J.-H.; Lee, S.-H.; Kim, H.-E. Improved compressive strength of reticulated porous zirconia using carbon coated polymeric sponge as novel template. Mater. Lett. 2006, 60, 2507–2510. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lee, S.; Ha, J.-H.; Lee, J.; Song, I.-H.; Moon, K.-S. Effect of the Sintering Temperature on the Compressive Strengths of Reticulated Porous Zirconia. Appl. Sci. 2021, 11, 5672. [Google Scholar] [CrossRef]
- Chen, R.; Jia, W.; Wang, Y.; Lao, D.; Hei, D.; Li, S. Optimization of the microstructure and properties of Al2O3-ZrO2 reticulated porous ceramics via in-situ synthesis of mullite whiskers and flowing-liquid phase. Mater. Lett. 2019, 243, 66–68. [Google Scholar] [CrossRef]
- Chen, R.; Jia, W.; Hei, D.; Wang, Y. Toward excellent performance of Al2O3-ZrO2 reticulated porous ceramics: New insights based on residual stress. Ceram. Int. 2018, 44, 21478–21485. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Lee, S.; Ha, J.-H.; Lee, J.; Song, I.-H.; Moon, K.-S. Effect of the Zirconia Particle Size on the Compressive Strength of Reticulated Porous Zirconia-Toughened Alumina. Appl. Sci. 2022, 12, 2316. https://doi.org/10.3390/app12052316
Lee C-Y, Lee S, Ha J-H, Lee J, Song I-H, Moon K-S. Effect of the Zirconia Particle Size on the Compressive Strength of Reticulated Porous Zirconia-Toughened Alumina. Applied Sciences. 2022; 12(5):2316. https://doi.org/10.3390/app12052316
Chicago/Turabian StyleLee, Chae-Young, Sujin Lee, Jang-Hoon Ha, Jongman Lee, In-Hyuck Song, and Kyoung-Seok Moon. 2022. "Effect of the Zirconia Particle Size on the Compressive Strength of Reticulated Porous Zirconia-Toughened Alumina" Applied Sciences 12, no. 5: 2316. https://doi.org/10.3390/app12052316
APA StyleLee, C. -Y., Lee, S., Ha, J. -H., Lee, J., Song, I. -H., & Moon, K. -S. (2022). Effect of the Zirconia Particle Size on the Compressive Strength of Reticulated Porous Zirconia-Toughened Alumina. Applied Sciences, 12(5), 2316. https://doi.org/10.3390/app12052316