Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Chondrocyte Culture
- control group—chondrocytes with no treatment;
- group exposed to OS (OS group)—chondrocytes exposed to H2O2;
- group exposed to US and OS (US—OS group)—chondrocytes exposed to US and H2O2.
2.2. US Exposure
2.3. OS Exposure
2.4. Protein Assay
2.5. Quantification of MDA
2.6. Enzyme-Linked Immunosorbent Assay
2.7. Transmission Electron Microscopy Assay
2.8. Statistical Analysis
3. Results
3.1. US in the Chosen Regimen Effectively Combated the Oxidant Effects of H2O2 Treatment
3.2. The Increase in TNF-α Level, Induced by H2O2 Treatment, Was Prevented by US Exposure
3.3. US Exposure Protected Chondrocytes from Ultrastructural Changes Induced by OS
4. Discussion
4.1. Oxidative Stress-Induced Ultrastructural Chondrocyte Damages
4.2. Ultrastructural Damages in Chondrocytes Exposed to OS Were Correlated with MDA and TNF-α Increase
4.3. US Exposure of Human Chondrocytes Cultures Prevented Ultrastructural Changes Induced by OS
4.4. US Therapy Induced Autophagosomes Occurence
4.5. Study Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loeser, R.F. Aging and osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 492–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caramés, B.; Taniguchi, N.; Otsuki, S.; Blanco, F.J.; Lotz, M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010, 62, 791–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suantawee, T.; Tantavisut, S.; Adisakwattana, S.; Tanavalee, A.; Yuktanandana, P.; Anomasiri, W.; Deepaisarnsakul, B.; Honsawek, S. Oxidative stress, vitamin e, and antioxidant capacity in knee osteoarthritis. J. Clin. Diagn. Res. 2013, 7, 1855–1859. [Google Scholar] [CrossRef] [PubMed]
- Dawn, I.; Naskar, S.; Sarkar, S.; De, C.; Biswas, G. A study to assess relationship between Synovial fluid lipid peroxidation marker and the severity of knee osteoarthritis. IOSR-JDMS 2013, 3, 60–63. [Google Scholar] [CrossRef]
- Tetik, S.; Ahmad, S.; Alturfan, A.A.; Fresko, I.; Disbudak, M.; Sahin, Y.; Aksoy, H.; Yardimci, K.T. Determination of oxidant stress in plasma of rheumatoid arthritis and primary osteoarthritis patients. Indian J. Biochem. Biophys. 2010, 47, 353–358. [Google Scholar]
- Moon, S.J.; Woo, Y.J.; Jeong, J.H.; Park, M.K.; Oh, H.J.; Park, J.S.; Kim, E.K.; Cho, M.L.; Park, S.H.; Kim, H.Y.; et al. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthr. Cartil. 2012, 20, 1426–1438. [Google Scholar] [CrossRef] [Green Version]
- Koike, M.; Nojiri, H.; Ozawa, Y.; Watanabe, K.; Muramatsu, Y.; Kaneko, H.; Morikawa, D.; Kobayashi, K.; Saita, Y.; Sasho, T.; et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci. Rep. 2015, 5, 11722. [Google Scholar] [CrossRef] [Green Version]
- Del Carlo, M., Jr.; Loeser, R.F. Nitric oxide–mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum. 2002, 46, 394–403. [Google Scholar] [CrossRef]
- Carlo, M.D., Jr.; Loeser, R.F. Increased oxidative stress with aging reduces chondrocyte survival: Correlation with intracellular glutathione levels. Arthritis Rheum. 2003, 48, 3419–3430. [Google Scholar] [CrossRef]
- Marchev, A.S.; Dimitrova, P.A.; Burns, A.J.; Kostov, R.V.; Dinkova-Kostova, A.T.; Georgiev, M.I. Oxidative stress and chronic inflammation in osteoarthritis: Can NRF2 counteract these partners in crime? Ann. N. Y. Acad. Sci. 2017, 1401, 114–135. [Google Scholar] [CrossRef]
- Mathy-Hartert, M.; Martin, G.; Devel, P.; Deby-Dupont, G.; Pujol, J.P.; Reginster, J.Y.; Henrotin, Y. Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes. Inflamm. Res. 2003, 52, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Naik, E.; Dixit, V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 2011, 208, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, X.; Shang, W.; Xu, J.; Wang, X.; Hu, X.; Ao, Y.; Cheng, H. Proinflammatory Cytokines Stimulate Mitochondrial Superoxide Flashes in Articular Chondrocytes In Vitro and In Situ. PLoS ONE 2013, 8, e66444. [Google Scholar] [CrossRef]
- Tiku, M.L.; Liesch, J.B.; Robertson, F.M. Production of hydrogenperoxide by rabbitarticularchondrocytes. Enhancement by cytokines. J. Immunol. 1990, 145, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Ungur, R.; Pop, L. Stresul oxinitrozativ, o verigă patogenetică esenţială în inducerea artrozei prin supraîncărcare articulară. PM3 2009, 4, 394–397. [Google Scholar]
- Greene, M.A.; Loeser, R.F. Aging-related inflammation in osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1966–1971. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Jat, P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev. Biol. 2021, 9, 645593. [Google Scholar] [CrossRef]
- Saklatvala, J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature 1986, 322, 547–549. [Google Scholar] [CrossRef]
- Séguin, C.A.; Bernier, S.M. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-kappaB signaling pathways. J. Cell Physiol. 2003, 197, 356–369. [Google Scholar] [CrossRef]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- Mengshol, J.A.; Vincenti, M.P.; Coon, C.I.; Barchowsky, A.; Brinckerhoff, C.E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: Differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum. 2000, 43, 801–811. [Google Scholar] [CrossRef]
- Tilwani, R.K.; Vessillier, S.; Pingguan-Murphy, B.; Lee, D.A.; Bader, D.L.; Chowdhury, T.T. Oxygen tension modulates the effects of TNFα in compressed chondrocytes. Inflamm. Res. 2017, 66, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodstone, N.J.; Hardingham, T.E. Tumour necrosis factor alpha stimulates nitric oxide production more potently than interleukin-1beta in porcine articular chondrocytes. Rheumatology 2002, 41, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzadeh, A.; Kamrava, S.K.; Joghataei, M.T.; Darabi, R.; Shakeri-Zadeh, A.; Shahriari, M.; Reiter, R.J.; Ghaznavi, H.; Mehrzadi, S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J. Pineal Res. 2016, 61, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, M.K.; Kerrigan, M.J.; Grieco, P.; Curley, G.P.; Locke, I.C.; Getting, S.J. Chondroprotective and anti-inflammatory role of melanocortin peptides in TNF-α activated human C-20/A4 chondrocytes. Br. J. Pharmacol. 2012, 167, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Jin, T.; Lu, Y. AntimiR-30b Inhibits TNF-α Mediated Apoptosis and Attenuated Cartilage Degradation through Enhancing Autophagy. Cell Physiol. Biochem. 2016, 40, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhao, J. ModulatedAutophagy by MicroRNAs in OsteoarthritisChondrocytes. Biomed. Res. Int. 2019, 2019, 1484152. [Google Scholar] [CrossRef]
- Kiffin, R.; Christian, C.; Knecht, E.; Cuervo, A.M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 2004, 15, 4829–4840. [Google Scholar] [CrossRef] [Green Version]
- Cuervo, A.M.; Bergamini, E.; Brunk, U.T.; Dröge, W.; Ffrench, M.; Terman, A. Autophagy and aging: The importance of maintaining “clean” cells. Autophagy 2005, 1, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Tai, H.; Wang, X.; Wang, Z.; Zhou, J.; Wei, X.; Ding, Y.; Gong, H.; Mo, C.; Zhang, J.; et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell 2016, 15, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Gao, F.; Niu, D.; Sun, X.; Song, Q.; Guo, C.; Liang, Y.; Sun, W. The Role of Autophagy in ChondrocyteMetabolism and Osteoarthritis: A Comprehensive Research Review. Biomed. Res. Int. 2019, 2019, 5171602. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Yang, M.; Lan, M.; Liu, C.; Zhang, Y.; Huang, B.; Liu, H.; Zhou, Y. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. Oxid. Med. Cell Longev. 2017, 2017, 5601593. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Xie, H.; Liu, Z.Z. The Role of Autophagy in Osteoarthritis. Front. Cell Dev. Biol. 2020, 8, 608388. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.M.; Shan, Z.Z.; Nakamura, H.; Masuko-Hongo, K.; Kato, T.; Nishioka, K.; Yudoh, K. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: Possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum. 2006, 54, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Dycus, D.L.; Au, A.Y.; Grzanna, M.W.; Wardlaw, J.L.; Frondoza, C.G. Modulation of inflammation and oxidative stress in canine chondrocytes. Am. J. Vet. Res. 2013, 74, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Loyola-Sánchez, A.; Richardson, J.; MacIntyre, N.J. Efficacy of ultrasound therapy for the management of knee osteoarthritis: A systematic review with meta-analysis. Osteoarthr. Cartil. 2010, 18, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Naito, K.; Watari, T.; Muta, T.; Furuhata, A.; Iwase, H.; Igarashi, M.; Kurosawa, H.; Nagaoka, I.; Kaneko, K. Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model. J. Orthop. Res. 2010, 28, 361–369. [Google Scholar] [CrossRef]
- Korstjens, C.M.; van der Rijt, R.H.; Albers, G.H.; Semeins, C.M.; Klein-Nulend, J. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro. Med. Biol Eng. Comput. 2008, 46, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Gurkan, I.; Ranganathan, A.; Yang, X.; Horton, W.E., Jr.; Todman, M.; Huckle, J.; Pleshko, N.; Spencer, R.G. Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment. Osteoarthr. Cartil. 2010, 18, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Luo, Q.; Zhang, J.; Lin, H.; Xia, L.; He, C. Comparing different physical factors on serum TNF-α levels, chondrocyte apoptosis, caspase-3 and caspase-8 expression in osteoarthritis of the knee in rabbits. Jt. Bone Spine 2011, 78, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.P.; Yang, S.H.; Chou, C.H.; Yang, K.C.; Wu, C.C.; Cheng, Y.H.; Lin, F.H. The chondroprotective effects of ferulic acid on hydrogen peroxide-stimulated chondrocytes: Inhibition of hydrogen peroxide-induced pro-inflammatory cytokines and metalloproteinase gene expression at the mRNA level. Inflamm. Res. 2010, 59, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Hensel, K.; Mienkina, M.P.; Schmitz, G. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound. Med. Biol. 2011, 37, 2105–2115. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Farnsworth, N.; Bensard, C.; Bryant, S.J. The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels. Osteoarthr. Cartil. 2012, 20, 1326–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydrox ynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef]
- Hayat, M.A. Principles and Techniques of Electron Microscopy–Biological Applications, 4th ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Watt, I.M. The Principles and Practice of Electron Microscopy, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; pp. 136–159. [Google Scholar]
- Nuttall, M.E.; Nadeau, D.P.; Fisher, P.W.; Wang, F.; Keller, P.M.; De Wolf, W.E., Jr.; Goldring, M.B.; Badger, A.M.; Lee, D.; Levy, M.A.; et al. Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. J. Orthop. Res. 2000, 18, 356–363. [Google Scholar] [CrossRef]
- Asada, S.; Fukuda, K.; Nishisaka, F.; Matsukawa, M.; Hamanisi, C. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm. Res. 2001, 50, 19–23. [Google Scholar] [CrossRef]
- Lo, M.Y.; Kim, H.T. Chondrocyte apoptosis induced by hydrogen peroxide requires caspase activation but not mitochondrial pore transition. J. Orthop. Res. 2004, 22, 1120–1125. [Google Scholar] [CrossRef]
- Asada, S.; Fukuda, K.; Oh, M.; Hamanishi, C.; Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 1999, 48, 399–403. [Google Scholar] [CrossRef]
- Goranov, N. Effect of therapeutic pulsed ultrasound in dogswith experimental stifle joint osteoarthritis. Bulg. J. Vet. Med. 2010, 13, 162–168. [Google Scholar]
- Ober, C.; Pestean, C.; Bel, L.; Taulescu, M.; Milgram, J.; Todor, A.; Ungur, R.; Leșu, M.; Oana, L. Use of clinical and computed tomography findings to assess long-term unsatisfactory outcome after femoral head and neck ostectomy in four large breed dogs. Acta Vet. Scand. 2018, 60, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acevedo, B.; Millis, D.L.; Levine, D.; Guevara, J.L. Effect of Therapeutic Ultrasound on Calcaneal Tendon Heating and Extensibility in Dogs. Front. Vet. Sci. 2019, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.J.; Stretanski, M.F. Ultrasound Therapy. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547717/ (accessed on 8 June 2021).
- Irsay, L.; Checiches, A.; Perja, D.; Borda, I.M.; Dogaru, G.; Ungur, R.; Ciubean, A.; Ciortea, V. Pharmacological pain management in patients with chronic hepatic disease. Balneo 2019, 10, 119–123. [Google Scholar] [CrossRef]
- Yang, Q.; Nanayakkara, G.K.; Drummer, C.; Sun, Y.; Johnson, C.; Cueto, R.; Fu, H.; Shao, Y.; Wang, L.; Yang, W.Y.; et al. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking. Front. Physiol. 2017, 8, 818. [Google Scholar] [CrossRef] [Green Version]
- Ungur, R.A.; Ciortea, V.M.; Irsay, L.; Ciubean, A.D.; Năsui, B.A.; Codea, R.A.; Singurean, V.E.; Groza, O.B.; Căinap, S.; Martiș Petruț, G.S.; et al. Can Ultrasound Therapy Be an Environmental-Friendly Alternative to Non-Steroidal Anti-Inflammatory Drugs in Knee Osteoarthritis Treatment? Materials 2021, 14, 2715. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, Z.; Wan, M. Bioeffects of low-intensity ultrasound in vitro: Apoptosis, protein profile alteration, and potential molecular mechanism. J. Ultrasound. Med. 2010, 29, 963–974. [Google Scholar] [CrossRef]
- Lagneaux, L.; de Meulenaer, E.C.; Delforge, A.; Dejeneffe, M.; Massy, M.; Moerman, C.; Hannecart, B.; Canivet, Y.; Lepeltier, M.F.; Bron, D. Ultrasonic low-energy treatment: A novel approach to induce apoptosis in human leukemic cells. Exp. Hematol. 2002, 30, 1293–1301. [Google Scholar] [CrossRef]
- Bertuglia, S. Mechanisms by which low-intensity ultrasound improve tolerance to ischemia-reperfusion injury. Ultrasound. Med. Biol. 2007, 33, 663–671. [Google Scholar] [CrossRef]
- Ungur, R.; Dronca, M.; Crăciun, E.C.; Rusu, R.L.; Văleanu, M.; Onac, I.; Borda, I.M.; Irsay, L. Improvement of total antioxidant status, a possible bioeffect of the ultrasound therapy-a pilot study. Rom. J. Lab. Med. 2011, 19, 177–183. [Google Scholar]
- Rosa, C.G.S.; Schemitt, E.G.; Hartmann, R.M.; Colares, J.R.; de Sousa, J.T.; Bona, S.; Moreira, A.J.; Ostjen, C.A.; Picada, J.N.; Campani, D.P.; et al. Effect of therapeutic ultrasound on the quadriceps muscle injury in rats—Evaluation of oxidative stress and inflammatory process. Am. J. Transl. Res. 2019, 11, 6660–6671. [Google Scholar] [PubMed]
- Wang, J.; Lai, B.; Nanayakkara, G.; Yang, Q.; Sun, Y.; Lu, Y.; Shao, Y.; Yu, D.; Yang, W.Y.; Cueto, R.; et al. Experimental Data-Mining Analyses Reveal New Roles of Low-IntensityUltrasound in Differentiating Cell Death Regulatome in Cancer and Non-cancer Cells via Potential Modulation of Chromatin Long-Range Interactions. Front. Oncol. 2019, 9, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Na, J.Y.; Song, K.B.; Choi, D.S.; Kim, J.H.; Kwon, Y.B.; Kwon, J. Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes. J. Ginseng Res. 2012, 36, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchini, A.; Cetrullo, S.; D’Adamo, S.; Guidotti, S.; Minguzzi, M.; Facchini, A.; Borzì, R.M.; Flamigni, F. Hydroxytyrosol prevents increase of osteoarthritis markers in human chondrocytes treated with hydrogen peroxide or growth-related oncogene alpha. PLoS ONE 2014, 9, e109724. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, E.; Armour, S.M.; Harris, M.H.; Thompson, C.B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003, 10, 709–717. [Google Scholar] [CrossRef]
- Chaudhari, N.; Talwar, P.; Parimisetty, A.; Lefebvre d’Hellencourt, C.; Ravanan, P. A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef]
- Sheldon, H.; Robinson, R.A. Studies on cartilage: II. Electron Microscope Observations on Rabbit Ear Cartilage following the Administration of Papain. J. Biophys. Biochem. Cytol. 1960, 8, 151–163. [Google Scholar] [CrossRef]
- Ungur, R.A.; Florea, A.; Tăbăran, A.F.; Scurtu, I.C.; Onac, I.; Borda, I.M.; Irsay, L.; Ciortea, V.M.; Dronca, E.; Zdrenghea, M.T.; et al. Chondroprotective effects of pulsed shortwave therapy in rabbits with experimental osteoarthritis. Rom. J. Morphol. Embryol 2017, 58, 465–472. [Google Scholar]
- Zhuang, C.; Xu, N.W.; Gao, G.M.; Ni, S.; Miao, K.S.; Li, C.K.; Wang, L.M.; Xie, H.G. Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int J. Biol. Macromol. 2016, 87, 322–328. [Google Scholar] [CrossRef]
- Gao, G.; Ding, H.; Zhuang, C.; Fan, W. Effects of Hesperidin on H2O2-Treated Chondrocytes and Cartilage in a Rat Osteoarthritis Model. Med. Sci. Monit. 2018, 24, 9177–9186. [Google Scholar] [CrossRef] [PubMed]
- Tiku, M.L.; Allison, G.T.; Naik, K.; Karry, S.K. Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthr. Cartil. 2003, 11, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Olszewska-Słonina, D.M.; Mątewski, D.; Czajkowski, R.; Olszewski, K.J.; Woźniak, A.; Odrowąż-Sypniewska, G.; Lis, K.; Musiałkiewicz, D.; Kowaliszyn, B. The concentration of thiobarbituric acid reactive substances (TBARS) and paraoxonase activity in blood of patients with osteoarthrosis after endoprosthesis implantation. Med. Sci. Monit. 2011, 17, CR498–CR504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wei, S.; Luo, M.; Yu, B.; Cao, J.; Yang, Z.; Wang, Z.; Goldring, M.B.; Chen, J. Oxidative stress and status of antioxidant enzymes in children with Kashin-Beck disease. Osteoarthr. Cartil. 2013, 21, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zhang, T.; Sun, H.; Wang, S.; Liu, M. Protective effects of dioscin against cartilage destruction in a monosodium iodoacetate (MIA)-indcued osteoarthritis rat model. Biomed. Pharm. 2018, 108, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Gavriilidis, C.; Miwa, S.; von Zglinicki, T.; Taylor, R.W.; Young, D.A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 2013, 65, 378–387. [Google Scholar] [CrossRef]
- Lim, H.D.; Kim, Y.S.; Ko, S.H.; Yoon, I.J.; Cho, S.G.; Chun, Y.H.; Choi, B.J.; Kim, E.C. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J. Pineal Res. 2012, 53, 225–237. [Google Scholar] [CrossRef]
- Chen, D.; Lu, D.; Liu, H.; Xue, E.; Zhang, Y.; Shang, P.; Pan, X. Pharmacological blockade of PCAF ameliorates osteoarthritis development via dual inhibition of TNF-α-driven inflammation and ER stress. eBioMedicine 2019, 50, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Han, G.T.; Cai, W.S.; Zhang, Y.B.; Zhou, S.Q.; He, B.; Li, H.H. Protective Effect of Pyrroloquinoline Quinone on TNF-α-induced Mitochondrial Injury in Chondrocytes. Curr. Med. Sci. 2021, 41, 100–107. [Google Scholar] [CrossRef]
- Laster, S.M.; Wood, J.G.; Gooding, L.R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 1988, 141, 2629–2634. [Google Scholar]
- Charlier, E.; Relic, B.; Deroyer, C.; Malaise, O.; Neuville, S.; Collée, J.; Malaise, M.G.; De Seny, D. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int. J. Mol. Sci. 2016, 17, 2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolberg-Stolberg, J.; Sambale, M.; Hansen, U.; Raschke, A.S.M.; Bertrand, J.; Pap, T.; Sherwood, J. Cartilage Trauma Induces Necroptotic Chondrocyte Death and Expulsion of Cellular Contents. Int. J. Mol. Sci. 2020, 21, 4204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, S.; Li, T.; Jiang, Y.; Huang, Z.; Wen, J.; Cheng, W.; Li, H. Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis. Osteoarthr. Cartil. 2017, 25, 1324–1334. [Google Scholar] [CrossRef]
- Onac, I.; Singureanu, V.; Moldovan, G.; Ungur, R. High Frequency Pulsatile Electromagnetic Fields and Ultrasound Pulsatile Fields Impact on Germination Dynamic at Ocimum basilicum L. and O. basilicum var. purpurascens Benth., Observed with Open Source Software. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Q.; Karagić, Đ.; Liu, X.; Cui, J.; Gui, J.; Gu, M.; Gao, W. Effects of ultrasonication on increasedgermination and improvedseedlinggrowth of agedgrassseeds of tallfescue and Russianwildrye. Sci. Rep. 2016, 6, 22403. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Liu, Q.; Yue, X.Z.; Meng, Z.W.; Liang, J. Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. Environ. Sci. Pollut Res. Int. 2013, 20, 4807–4816. [Google Scholar] [CrossRef]
- Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Vinatier, C.; Merceron, C.; Guicheux, J. Osteoarthritis: From pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. J. Drug Discov. Today 2016, 21, 1932–1937. [Google Scholar] [CrossRef]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Meng, Z.; Jiao, Y.; Ren, Y.; Yang, X.; Liu, H.; Wang, R.; Cui, Y.; Pan, L.; Cao, Y. The endoplasmic reticulum stressinduced by tunicamycinaffects the viability and autophagyactivity of chondrocytes. J. Clin. Lab. Anal. 2020, 34, e23437. [Google Scholar] [CrossRef]
- Caramés, B.; Olmer, M.; Kiosses, W.B.; Lotz, M.K. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. 2015, 67, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Uberti, F.; Lattuada, D.; Morsanuto, V.; Nava, U.; Bolis, G.; Vacca, G.; Squarzanti, D.F.; Cisari, C.; Molinari, C. Vitamin D protects Human Endothelial Cells from oxidative stress through the autophagic and survival pathways. J. Clin. Endocrinol. Metab 2014, 99, 1367–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Zheng, G.; Feng, Z.; Chen, Y.; Lou, Y.; Wang, C.; Zhang, X.; Zhang, Y.; Xu, H.; Shang, P.; et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 2017, 8, e3081. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sun, R.Q.; Zeng, X.Y.; Zhou, X.; Li, S.; Jo, E.; Molero, J.C.; Ye, J.M. Restoration of Autophagy Alleviates Hepatic ER stress and Impaired Insulin Signalling Transduction in High Fructose-Fed Male Mice. Endocrinology 2015, 156, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.J.; Kim, G.Y. Effect of low intensity pulsed ultrasound in activating the mitogen-activated protein kinase signaling pathway and inhibition inflammation cytokine synthesis in chondrocytes. Phys. Ther. Rehabil. Sci. 2014, 3, 33–37. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Qin, Z.; Hu, L.; Wang, X. Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway. OncoTargets Ther. 2018, 11, 5621–5630. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Crawford, R.; Xia, Y. Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis. J. Cell Biochem. 2013, 114, 245–249. [Google Scholar] [CrossRef]
- Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthr. Cartil. 2020, 28, 400–409. [Google Scholar] [CrossRef]
- Wang, P.; Leung, A.W.; Xu, C. Low-intensity ultrasound-induced cellular destruction and autophagy of nasopharyngeal carcinoma cells. Exp. Ther. Med. 2011, 2, 849–852. [Google Scholar] [CrossRef]
- Wang, Y.U.; Chen, Y.N.; Zhang, W.; Yang, Y.U.; Shen, E.; Hu, B. Upregulation of Beclin-1 expression in DU-145 cells following low-frequency ultrasound irradiation combined with microbubbles. Oncol. Lett. 2015, 10, 2487–2490. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Q.; Wang, Z.; Wang, P.; Zhao, P.; Zhao, X.; Yang, L.; Li, Y. Role of autophagy in sonodynamic therapy-induced cytotoxicity in S180 cells. Ultrasound Med. Biol. 2010, 36, 1933–1946. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.Y.; Li, Y.; Zhong, Z.Y.; Jiang, Y.Q.; Li, X.S.; Han, X.B.; Liu, Z.N.; Tian, Y.; Yang, L.M. Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis. 2017, 8, e2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, R.; Leinenga, G.; Götz, J. Repeated ultrasound treatment of tau transgenic mice clears neuronal tau by autophagy and improves behavioral functions. Theranostics 2019, 9, 3754–3767. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Q.; Zhang, T.; Wang, X.; Cheng, K.; Gao, M.; Xia, P.; Li, X. Low-intensity pulsed ultrasound promotes chondrogenesis of mesenchymal stem cells via regulation of autophagy. Stem Cell Res. Ther. 2019, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
OS Markers | OS Group (Mean ± SD) | US-OS Group (Mean ± SD) | CG (Mean ± SD) |
---|---|---|---|
MDA (nmoL/mg prot) | 11.9 ± 1.2 | 5.0 ± 0.8 | 7.2 ± 0.6 |
TNF (nmoL/mg prot) | 13.7 ± 1.1 | 6.5 ± 0.8 | 5.7 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungur, R.A.; Muresan, A.; Olteanu, D.E.; Florea, A.; Ciortea, V.M.; Irsay, L.; Borda, I.M.; Codea, R.A.; Ober, C.A.; Bâlici, Ș.; et al. Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress. Appl. Sci. 2022, 12, 2334. https://doi.org/10.3390/app12052334
Ungur RA, Muresan A, Olteanu DE, Florea A, Ciortea VM, Irsay L, Borda IM, Codea RA, Ober CA, Bâlici Ș, et al. Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress. Applied Sciences. 2022; 12(5):2334. https://doi.org/10.3390/app12052334
Chicago/Turabian StyleUngur, Rodica Ana, Adriana Muresan, Diana Elena Olteanu, Adrian Florea, Viorela Mihaela Ciortea, Laszlo Irsay, Ileana Monica Borda, Răzvan Andrei Codea, Ciprian Andrei Ober, Ștefana Bâlici, and et al. 2022. "Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress" Applied Sciences 12, no. 5: 2334. https://doi.org/10.3390/app12052334
APA StyleUngur, R. A., Muresan, A., Olteanu, D. E., Florea, A., Ciortea, V. M., Irsay, L., Borda, I. M., Codea, R. A., Ober, C. A., Bâlici, Ș., Căinap, S., Dronca, E., Martiș, G. S., Onac, I. A., & Suciu, Ş. M. (2022). Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress. Applied Sciences, 12(5), 2334. https://doi.org/10.3390/app12052334