γ-Cyclodextrin Inclusion of Phloroglucinol: Solid State Studies and Antioxidant Activity throughout the Digestive Tract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Preparation of the Inclusion Complex of γ-CD with Phloroglucinol as a Solid Material
2.4. Gastrointestinal Digestion Simulation
2.5. Antioxidant Assays
2.6. Statistical Analysis
3. Results and Discussion
3.1. Investigation of Phloroglucinol Inclusion into γ-CD in Aqueous Solution
3.2. Preparation of the γ-CD·Phloroglucinol Inclusion Compound as a Solid
3.3. Solid-State Studies of γ-CD·Phloroglucinol Inclusion Compound
3.3.1. FT-IR Spectroscopy
3.3.2. Powder X-ray Diffraction
3.3.3. Thermal Analyses
3.4. Anti-Radical Activity of Free and Included Phloroglucinol along the Gastrointestinal Tract
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DTA | Differential thermal analysis |
FT-IR | Fourier-transform infrared spectroscopy |
γ-CD | gamma-Cyclodextrin |
γ-CD·PG | Inclusion compound of phloroglucinol in gamma-Cyclodextrin |
NMR | Nuclear magnetic resonance |
NOESY | Nuclear overhauser effect spectroscopy |
PG | Phloroglucinol |
PXRD | Powder X-ray diffraction |
TGA | Thermogravimetric analysis |
References
- Singh, I.P.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef] [PubMed]
- Phloroglucinol 80 mg-20 Orodispersible Tablets–MYLAN. Available online: https://euro-pharmas.com/en/pain-and-fever/623-phloroglucinol-80mg-20-orodispersible-tablets-mylan.html (accessed on 20 July 2021).
- Jafri, W.; Yakoob, J.; Hussain, S.; Jafri, N.; Islam, M. Phloroglucinol (Spasfon) in irritable bowel syndrome. Am. J. Gastroenterol. 2005, 100, S333. [Google Scholar] [CrossRef]
- Chassany, O.; Bonaz, B.; Bruley Des Varannes, S.; Bueno, L.; Cargil, G.; Coffin, B.; Ducrotte, P.; Grange, V. Acute exacerbation of pain in irritable bowel syndrome: Efficacy of phloroglucinol/trimethylphloroglucinol—A randomized, double-blind, placebo-controlled study. Aliment. Pharmacol. Ther. 2007, 25, 1115–1123. [Google Scholar] [CrossRef]
- Yuan, S.; Gao, F.; Xin, Z.; Guo, H.; Shi, S.; Shi, L.; Yang, X.; Guan, J. Comparison of the efficacy and safety of phloroglucinol and magnesium sulfate in the treatment of threatened abortion. A meta-analysis of randomized controlled trials. Medicine 2019, 98, e16026. [Google Scholar] [CrossRef]
- Quéguineur, B.; Goya, L.; Ramos, S.; Martín, M.A.; Mateos, R.; Bravo, L. Phloroglucinol: Antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem. Toxicol. 2012, 50, 2886–2893. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.C.; Piao, M.J.; Cho, S.J.; Lee, N.H.; Hyun, J.W. Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress. Photodermatol. Photoimmunol. Photomed. 2012, 28, 322–331. [Google Scholar] [CrossRef]
- Ryu, J.; Zhang, R.; Hong, B.H.; Yang, E.J.; Kang, K.A.; Choi, M.; Kim, K.C.; Noh, S.J.; Kim, H.S.; Lee, N.H.; et al. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson’s disease by enhancing Nrf2 activity. PLoS ONE 2013, 7, e71178. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Senthamilselvi, S.; Govindaraju, M. Phloroglucinol-encapsulated starch biopolymer: Preparation, antioxidant and cytotoxic effects on HepG2 liver cancer cell lines. RSC Adv. 2014, 4, 26787–26795. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, S.-E.; Pyo, Y.-C.; Tran, P.; Park, J.-S. Solubility enhancement and application of cyclodextrins in local drug delivery. J. Pharm. Investig. 2020, 50, 17–27. [Google Scholar] [CrossRef]
- Braga, S.S.; Pais, J. Getting under the skin: Cyclodextrin inclusion for the controlled delivery of active substances to the dermis. In Design of Nanostructures for Versatile Therapeutic Applications, 1st ed.; Grumezescu, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 10; pp. 407–449. [Google Scholar]
- European Medicines Agency, Background Review for Cyclodextrins Used as Excipients. 2014. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2014/12/WC500177936.pdf (accessed on 9 December 2020).
- Braga, S.S.; Barbosa, J.S.; Santos, N.E.; El-Saleh, F.; Paz, F.A.A. Cyclodextrins in antiviral therapeutics and vaccines. Pharmaceutics 2021, 13, 409. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Martina, K.; Cravotto, G. Cyclodextrins in the antiviral therapy. J. Drug Deliv. Sci. Technol. 2021, 64, 102589. [Google Scholar] [CrossRef] [PubMed]
- Miranda, G.M.; Santos, V.O.R.; Bessa, J.R.; Teles, Y.C.F.; Yahouédéhou, S.C.M.A.; Gonçalves, M.S.; Ribeiro-Filho, J. Inclusion complexes of non-steroidal anti-inflammatory drugs with cyclodextrins: A systematic review. Biomolecules 2021, 11, 361. [Google Scholar] [CrossRef]
- Rassu, G.; Sorrenti, M.; Catenacci, L.; Pavan, B.; Ferraro, L.; Gavini, E.; Bonferoni, M.C.; Giunchedi, P.; Dalpiaz, A. Versatile nasal application of cyclodextrins: Excipients and/or actives? Pharmaceutics 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Jicsinszky, L.; Cravotto, G. Cyclodextrins in skin formulations and transdermal delivery. J. Skin Stem Cell 2020, 6, e102561. [Google Scholar] [CrossRef]
- Pereira, A.B.; Braga, S.S. Cyclodextrin inclusion of nutraceuticals, from the bench to your table. In Cyclodextrins: Synthesis, Chemical Applications and Role in Drug Delivery, 1st ed.; Ramirez, F.G., Ed.; NovaSience: Hauppage, NY, USA, 2015; Chapter 6; pp. 195–224. [Google Scholar]
- Fenyvesi, É.; Vikmon, M.; Szente, L. Cyclodextrins in food technology and human nutrition: Benefits and limitations. Crit. Rev. Food Sci. Nutr. 2016, 56, 1981–2004. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.S.; Shanmugam, S.; Quintans, J.S.S.; Quintans-Júnior, L.J.; Araújo, A.A.S. Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: A systematic review. Phytochem. Rev. 2019, 18, 1337–1359. [Google Scholar] [CrossRef]
- Pereira, A.B.; Silva, A.M.; Barroca, M.J.; Marques, M.P.M.; Braga, S.S. Physicochemical properties, antioxidant action and practical application in fresh cheese of the solid inclusion compound γ-cyclodextrin·quercetin, in comparison with β-cyclodextrin·quercetin. Arab. J. Chem. 2020, 13, 205–215. [Google Scholar] [CrossRef]
- Pais, J.M.; Barroca, M.J.; Marques, M.P.M.; Paz, F.A.A.; Braga, S.S. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound. Beilstein J. Org. Chem. 2017, 13, 2138–2145. [Google Scholar] [CrossRef] [Green Version]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Supramolecular carotenoid complexes of enhanced solubility and stability—The way of bioavailability improvement. Molecules 2019, 24, 3947. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, N.E.; Leshina, T.V.; Konovalova, T.A.; Hand, E.O.; Kispert, L.D. Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Radic. Biol. Med. 2004, 36, 872–880. [Google Scholar] [CrossRef]
- Lima, P.S.S.; Luchese, A.M.; Araújo-Filho, H.G.; Menezes, P.P.; Araújo, A.A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S. Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches. Carbohyd. Polym. 2016, 151, 965–987. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Dinda, A.K.; Chaudhury, S.; Dasgupta, S. β-cyclodextrin encapsulated polyphenols as effective antioxidants. Biopolymers 2018, 109, e23084. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Thoo, Y.Y.; Young, D.J.; Siow, L.F. Inclusion complexation of catechin by β-cyclodextrins: Characterization and storage stability. LWT 2017, 86, 555–565. [Google Scholar] [CrossRef]
- Li, Q.; Ou, H.; Tang, P.; Tang, B.; Sun, Q.; Li, H. Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity. Food Chem. 2018, 245, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Carbohydrate—Polyphenol Complexation. In Chemistry and Significance of Condensed Tannins; Hemingway, R.W., Karchesy, J.J., Branham, S.J., Eds.; Springer: Boston, MA, USA, 1989; pp. 307–322. [Google Scholar] [CrossRef]
- Catarino, M.D.; Marçal, C.; Bonifácio-Lopes, T.; Campos, D.; Mateus, N.; Silva, A.M.S.; Pintado, M.M.; Cardoso, S.C. Impact of phlorotannin extracts from Fucus vesiculosus on human gut microbiota. Mar. Drugs 2021, 19, 375. [Google Scholar] [CrossRef]
- Pereira, O.; Catarino, M.D.; Afonso, A.; Silva, A.M.S.; Cardoso, S.M. Salvia elegans, Salvia greggii and Salvia officinalis decoctions: Antioxidant activities and inhibition of carbohydrate and lipid metabolic enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-assisted extraction of phlorotannins from Fucus vesiculosus. Mar. Drugs 2020, 18, 559. [Google Scholar] [CrossRef]
- Schneider, H.-J.; Hacket, F.; Rüdigger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 1998, 98, 1755–1786. [Google Scholar] [CrossRef]
- Pessine, F.B.; Calderini, A.; Alexandrino, G.L. Review: Cyclodextrin inclusion complexes probed by NMR techniques. In Magnetic Resonance Spectroscopy; Kim, D.-H., Ed.; IntechOpen Limited: London, UK, 2012; Chapter 12; pp. 1–30. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, S.; Rajkumar, P.; Thirunavukkarasu, K.; Gunasekaran, S.; Kumaresan, S.P. Vibrational (FT-IR and FT-Raman), electronic (UV–vis) and quantum chemical investigations on pyrogallol: A study on benzenetriol dimers. Vib. Spec. 2018, 95, 16–22. [Google Scholar] [CrossRef]
- Catenacci, L.; Sorrenti, M.; Bonferoni, M.C.; Hunt, L.; Caira, M.R. Inclusion of the phytoalexin trans-resveratrol in native cyclodextrins: A thermal, spectroscopic, and X-ray structural study. Molecules 2020, 25, 998. [Google Scholar] [CrossRef] [Green Version]
- Roik, N.V.; Belyakova, L.A. IR Spectroscopy, X-ray diffraction and thermal analysis studies of solid “β-Cyclodextrin-para-aminobenzoic acid” inclusion complex. Phys. Chem. Solid State 2011, 12, 168–173. [Google Scholar]
- Ramos, A.I.; Braga, T.M.; Fernandes, J.A.; Silva, P.; Ribeiro-Claro, P.J.; Paz, F.A.A.; Lopes, M.F.S.; Braga, S.S. Analysis of the microcrystalline inclusion compounds of triclosan with γ-cyclodextrin and its tris-O-methylated derivative. J. Pharm. Biomed. Anal. 2013, 80, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Braga, S.S.; Aree, T.; Imamura, K.; Vertut, P.; Boal-Palheiros, I.; Saenger, W.; Teixeira-Dias, J.J.C. Structure of the β-cyclodextrin·p-hydroxybenzaldehyde inclusion complex in aqueous solution and in the crystalline state. J. Inclus. Phenom. Macro. Chem. 2002, 43, 115–125. [Google Scholar] [CrossRef]
- Kamitori, S.; Hirotsu, K.; Higuchi, T. Crystal and molecular structure of the γ-cyclodextrin–12-crown-4 1: 1 inclusion complex. J. Chem. Soc. Chem. Commun. 1986, 690–691. [Google Scholar] [CrossRef]
- Caira, M.R. On the isostructurality of cyclodextrin inclusion complexes and its practical utility. Rev. Roum. Chim. 2001, 46, 371–386. [Google Scholar]
- Sánchez-Velázquez, O.A.; Mulero, M.; Cuevas-Rodríguez, E.O.; Mondor, M.; Arcand, Y.; Hernández-Álvarez, A.J. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.). Food Funct. 2021, 12, 7358–7378. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Connor, T.P.; O’Brien, N.M. Comparison of the antioxidant activity of commercial honeys, before and after in-vitro digestion. Pol. J. Food Nutr. Sci. 2013, 63, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Breslow, R.; Dong, S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 1998, 98, 1997–2011. [Google Scholar] [CrossRef]
- Braga, S.S. Modern alchemy with metal complexes inside cyclodextrins, the molecular cauldrons. Curr. Org. Chem. 2010, 14, 1356–1361. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.; Cruz, M.T.; Mateus, N.; Silva, A.M.S.; Cardoso, S.M. Phlorotannins from Fucus vesiculosus: Modulation of inflammatory response by blocking NF-κB signaling pathway. Int. J. Mol. Sci. 2020, 21, 6897. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, M.D.; Costa, B.S.B.; Circuncisão, A.R.; Silva, A.M.S.; Cardoso, S.M.; Braga, S.S. γ-Cyclodextrin Inclusion of Phloroglucinol: Solid State Studies and Antioxidant Activity throughout the Digestive Tract. Appl. Sci. 2022, 12, 2340. https://doi.org/10.3390/app12052340
Catarino MD, Costa BSB, Circuncisão AR, Silva AMS, Cardoso SM, Braga SS. γ-Cyclodextrin Inclusion of Phloroglucinol: Solid State Studies and Antioxidant Activity throughout the Digestive Tract. Applied Sciences. 2022; 12(5):2340. https://doi.org/10.3390/app12052340
Chicago/Turabian StyleCatarino, Marcelo D., Beatriz S. Baía Costa, Ana Rita Circuncisão, Artur M. S. Silva, Susana M. Cardoso, and Susana Santos Braga. 2022. "γ-Cyclodextrin Inclusion of Phloroglucinol: Solid State Studies and Antioxidant Activity throughout the Digestive Tract" Applied Sciences 12, no. 5: 2340. https://doi.org/10.3390/app12052340
APA StyleCatarino, M. D., Costa, B. S. B., Circuncisão, A. R., Silva, A. M. S., Cardoso, S. M., & Braga, S. S. (2022). γ-Cyclodextrin Inclusion of Phloroglucinol: Solid State Studies and Antioxidant Activity throughout the Digestive Tract. Applied Sciences, 12(5), 2340. https://doi.org/10.3390/app12052340