Reversible Electroporation and Post-Electroporation Resting of Thai Basil Leaves Prior to Convective and Vacuum Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thai Basil Leaves Handling
2.2. Electrical Treatment
2.3. Resting
2.4. Drying
2.4.1. Convective Drying
2.4.2. Vacuum Drying
2.5. Analysis
2.5.1. Moisture Ratio
2.5.2. Moisture Content and Water Activity
2.5.3. Rehydration
2.5.4. Conductivity
2.5.5. Photosynthesis and Respiration
2.5.6. Color
2.5.7. High-Resolution Optical Microscopy
2.5.8. Statistical Analysis
3. Results
3.1. Drying Time, Moisture Ratio and Water Activity
3.2. Rehydration Capacity
3.3. Ion Release during Rehydration
3.4. Photosynthesis and Respiration
3.5. Vacuum Drying Increased Cell Death
3.6. Leaf Color
3.7. Trichome Structure
4. Discussion
5. Conclusions
- Under the studied drying conditions, vacuum drying provoked more cell damage and tissue collapse than convective air drying at MR of 0.2 and 0.1. Under complete dehydration (aw = 0.05) damage seemed to be similar for both drying methods irrespective of if the leaves were PEF pretreated or not.
- The protective effect of resting after reversible PEF application on metabolic and ionic integrity was only detected at high water activities and suppressed upon full dehydration (aw = 0.5).
- Samples dried under vacuum showed less color degradation upon rehydration when compared to convective dried samples.
- When dried with either convective or vacuum drying, reversible electroporation followed by resting resulted in higher trichome preservation than in samples that were not PEF-treated. When the PEF-rested treatment was combined with convective drying, the area of the trichomes was found to be similar to that of the fresh leaf sample.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Won, Y.-C.; Min, S.C.; Lee, D.-U. Accelerated Drying and Improved Color Properties of Red Pepper by Pretreatment of Pulsed Electric Fields. Dry. Technol. 2014, 33, 926–932. [Google Scholar] [CrossRef]
- Traffano-Schiffo, M.V.; Tylewicz, U.; Castro-Giraldez, M.; Fito, P.J.; Ragni, L.; Dalla Rosa, M. Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innov. Food Sci. Emerg. Technol. 2016, 38, 243–251. [Google Scholar] [CrossRef]
- Liu, C.Y.; Grimi, N.; Lebovka, N.; Vorobiev, E. Effects of pulsed electric fields treatment on vacuum drying of potato tissue. LWT-Food Sci. Technol. 2018, 95, 289–294. [Google Scholar] [CrossRef]
- Kwao, S.; Al-Hamimi, S.; Damas, M.E.V.; Rasmusson, A.G.; Gómez Galindo, F. Effect of guard cells electroporation on drying kinetics and aroma compounds of Genovese basil (Ocimum basilicum L.) leaves. Innov. Food Sci. Emerg. Technol. 2016, 38, 15–23. [Google Scholar] [CrossRef]
- Ostermeier, R.; Giersemehl, P.; Siemer, C.; Topfl, S.; Jager, H. Influence of pulsed electric field (PEF) pre-treatment on the convective drying kinetics of onions. J. Food Eng. 2018, 237, 110–117. [Google Scholar] [CrossRef]
- Parniakov, O.; Bals, O.; Lebovka, N.; Vorobiev, E. Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innov. Food Sci. Emerg. Technol. 2016, 35, 52–57. [Google Scholar] [CrossRef]
- Mannozzi, C.; Fauster, T.; Haas, K.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Jaeger, H. Role of thermal and electric field effects during the pre-treatment of fruit and vegetable mash by pulsed electric fields (PEF) and ohmic heating (OH). Innov. Food Sci. Emerg. Technol. 2018, 48, 131–137. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Lakka, A.; Palaiogiannis, D.; Pappas, V.M.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Pulsed Electric Field and Salvia officinalis L. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods 2021, 10, 2014. [Google Scholar] [CrossRef]
- Ahmad Shiekh, K.; Odunayo Olatunde, O.; Zhang, B.; Huda, N.; Benjakul, S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chem. 2021, 359, 129976. [Google Scholar] [CrossRef]
- Šalaševičius, A.; Uždavinytė, D.; Visockis, M.; Ruzgys, P.; Šatkauskas, S. Effect of Pulsed Electric Field (PEF) on Bacterial Viability and Whey Protein in the Processing of Raw Milk. Appl. Sci. 2021, 11, 11281. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Ramon-Mascarell, F.; Pallarés, N.; Ferrer, E.; Berrada, H.; Phimolsiripol, Y.; Barba, F.J. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl. Sci. 2021, 11, 7629. [Google Scholar] [CrossRef]
- Telfser, A.; Gómez Galindo, F. Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT-Food Sci. Technol. 2019, 99, 148–155. [Google Scholar] [CrossRef]
- Thamkaew, G.; Gómez Galindo, F. Influence of pulsed and moderate electric field protocols on the reversible permeabilization and drying of Thai basil leaves. Innov. Food Sci. Emerg. Technol. 2020, 64, 102430. [Google Scholar] [CrossRef]
- Wagner, G.J. Secreting glandular trichomes: More than just hairs. Plant Physiol. 1991, 96, 675–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebadi, M.-T.; Azizi, M.; Sefidkon, F.; Ahmadi, N. Influence of different drying methods on drying period, essential oil content and composition of Lippia citriodora Kunth. J. Appl. Res. Med. Aromat. Plants 2015, 2, 182–187. [Google Scholar] [CrossRef]
- Hee, Y.; Chong, G.H. Drying behaviour of Andrographis paniculata in vacuum drying. Int. Food Res. J. 2015, 22, 393–397. [Google Scholar]
- Thamkaew, G.; Wadso, L.; Rasmusson, A.G.; Gomez Galindo, F. The effect of reversible permeabilization and post-electroporation resting on the survival of Thai basil (O. Basilicum cv. thyrsiflora) leaves during drying. Bioelectrochemistry 2021, 142, 107912. [Google Scholar] [CrossRef]
- Zhang, X.; Oppenheimer, D.G. A Simple and Efficient Method for Isolating Trichomes for Downstream Analyses. Plant Cell. Physiol. 2004, 45, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Erbay, Z.; Icier, F. A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Crit. Rev. Food Sci. Nutr. 2010, 50, 441–464. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Panarese, V.; Rocculi, P.; Baldi, E.; Wadso, L.; Rasmusson, A.G.; Gómez Galindo, F. Vacuum impregnation modulates the metabolic activity of spinach leaves. Innov. Food Sci. Emerg. Technol. 2014, 26, 286–293. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjoholm, I.; Gómez Galindo, F. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef]
- Gómez Galindo, F.; Sjöholm, I.; Rasmusson, A.G.; Widell, S.; Kaack, K. Plant Stress Physiology: Opportunities and Challenges for the Food Industry. Crit. Rev. Food Sci. Nutr. 2007, 47, 749–763. [Google Scholar] [CrossRef]
- Gómez Galindo, F. Responses of Plant Cells and Tissues to Pulsed Electric Field Treatments. In Handbook of Electroporation; Miklavčič, D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 2621–2635. [Google Scholar]
- Demir, E.; Dymek, K.; Gómez Galindo, F. Technology Allowing Baby Spinach Leaves to Acquire Freezing Tolerance. Food Bioprocess Technol. 2018, 11, 809–817. [Google Scholar] [CrossRef]
- Yamasaki, S.; Noguchi, N.; Mimaki, K. Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. J. Radiat. Res. 2007, 48, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 2020, 31, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kundan, M.; Gani, U.; Nautiyal, A.K.; Misra, P. Molecular Biology of Glandular Trichomes and Their Functions in Environmental Stresses. In Molecular Approaches in Plant Biology and Environmental Challenges; Singh, S.P., Upadhyay, S.K., Pandey, A., Kumar, S., Eds.; Springer: Singapore, 2019; pp. 365–393. [Google Scholar]
- Cai, Z.; Riedel, H.; Thaw Saw, N.M.M.; Kütük, O.; Mewis, I.; Jäger, H.; Knorr, D.; Smetanska, I. Effects of Pulsed Electric Field on Secondary Metabolism of Vitis vinifera L. cv. Gamay Fréaux Suspension Culture and Exudates. Appl. Biochem. Biotechnol. 2011, 164, 443–453. [Google Scholar] [CrossRef]
Treatments | Drying Methods | Experimental Drying Time (min) | Relative Drying Time Compare to Control | Target MR | Experimental MR | aw * |
---|---|---|---|---|---|---|
Control | CD | 62 | Control (1.00) | 0.2 | 0.191 ± 0.027 a | 0.841 ± 0.034 a |
Control-rested | CD | 92 | 1.48 | 0.2 | 0.194 ± 0.018 a | 0.864 ± 0.017 a |
PEF-rested | CD | 49 | 0.79 | 0.2 | 0.212 ± 0.019 a | 0.823 ± 0.034 a |
Control | CD | 123 | Control (1.00) | 0.1 | 0.113 ± 0.008 b | 0.614 ± 0.013 b |
Control-rested | CD | 205 | 1.66 | 0.1 | 0.091 ± 0.013 b | 0.605 ± 0.013 b |
PEF-rested | CD | 95 | 0.77 | 0.1 | 0.103 ± 0.018 b | 0.612 ± 0.016 b |
Control | CD | 204 | Control (1.00) | 0.05 | 0.049 ± 0.008 c | 0.465 ± 0.040 c |
Control-rested | CD | 368 | 1.81 | 0.05 | 0.046 ± 0.004 c | 0.512 ± 0.054 c |
PEF-rested | CD | 154 | 0.76 | 0.05 | 0.052 ± 0.005 c | 0.478 ± 0.035 c |
Control | VD | 110 | Control (1.00) | 0.2 | 0.185 ± 0.006 a | 0.807 ± 0.004 a |
Control-rested | VD | 60 | 0.55 | 0.2 | 0.204 ± 0.024 a | 0.849 ± 0.040 a |
PEF-rested | VD | 40 | 0.36 | 0.2 | 0.202 ± 0.030 a | 0.811 ± 0.008 a |
Control | VD | 390 | Control (1.00) | 0.1 | 0.094 ± 0.007 b | 0.630 ± 0.031 b |
Control-rested | VD | 110 | 0.28 | 0.1 | 0.109 ± 0.018 b | 0.617 ± 0.030 b |
PEF-rested | VD | 90 | 0.23 | 0.1 | 0.109 ± 0.014 b | 0.604 ± 0.010 b |
Control | VD | 672 | Control (1.00) | 0.05 | 0.045 ± 0.004 c | 0.494 ± 0.049 c |
Control-rested | VD | 652 | 0.97 | 0.05 | 0.049 ± 0.006 c | 0.509 ± 0.043 c |
PEF-rested | VD | 592 | 0.88 | 0.05 | 0.054 ± 0.005 c | 0.491 ± 0.046 c |
Pretreatments | Drying Methods | RC (kg Water/kg Dry Matter) * | ||
---|---|---|---|---|
MR = 0.20 | MR = 0.10 | MR = 0.05 | ||
Control | CD | 8.05 ± 0.33 b | 4.50 ± 0.20 a | 2.81 ± 0.39 a |
Control-rested | CD | 9.17 ± 1.99 bc | 5.35 ± 0.05 b | 3.52 ± 0.51 a |
PEF-rested | CD | 11.6 ± 0.78 c | 6.28 ±0.29 c | 3.59 ± 0.57 a |
Control | VD | 6.33 ± 0.07 a | 4.22 ± 0.22 a | 2.79 ± 0.61 a |
Control-rested | VD | 7.59 ± 0.99 b | 4.21 ± 0.07 a | 3.58 ± 0.39 a |
PEF-rested | VD | 7.61 ± 0.19 b | 4.24 ± 0.12 a | 3.43 ± 0.58 a |
Samples | Drying Method | Partially Collapsed Trichomes (%) | Collapsed Trichomes (%) | Area of Trichomes (µm2) |
---|---|---|---|---|
Fresh | CD | 3 ± 2 a | 0 ± 0 a | 2267 ± 89 a |
Control | CD | 33 ± 5 b | 18 ± 4 cd | 1204 ± 133 cd |
Control-rested | CD | 27 ± 3 c | 19 ± 5 cd | 1001 ± 115 cde |
PEF-rested | CD | 20 ± 4 d | 5 ± 3 b | 2218 ± 65 a |
Control | VD | 32 ± 5 b | 23 ± 3 d | 727 ± 80 e |
Control-rested | VD | 29 ± 4 c | 15 ± 3 c | 827 ± 102 de |
PEF-rested | VD | 27 ± 5 c | 7 ± 3 b | 1785 ± 76 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thamkaew, G.; Rasmusson, A.G.; Orlov, D.; Galindo, F.G. Reversible Electroporation and Post-Electroporation Resting of Thai Basil Leaves Prior to Convective and Vacuum Drying. Appl. Sci. 2022, 12, 2343. https://doi.org/10.3390/app12052343
Thamkaew G, Rasmusson AG, Orlov D, Galindo FG. Reversible Electroporation and Post-Electroporation Resting of Thai Basil Leaves Prior to Convective and Vacuum Drying. Applied Sciences. 2022; 12(5):2343. https://doi.org/10.3390/app12052343
Chicago/Turabian StyleThamkaew, Grant, Allan G. Rasmusson, Dmytro Orlov, and Federico Gómez Galindo. 2022. "Reversible Electroporation and Post-Electroporation Resting of Thai Basil Leaves Prior to Convective and Vacuum Drying" Applied Sciences 12, no. 5: 2343. https://doi.org/10.3390/app12052343
APA StyleThamkaew, G., Rasmusson, A. G., Orlov, D., & Galindo, F. G. (2022). Reversible Electroporation and Post-Electroporation Resting of Thai Basil Leaves Prior to Convective and Vacuum Drying. Applied Sciences, 12(5), 2343. https://doi.org/10.3390/app12052343