Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Drying
2.2. Physico-Chemical Analysis
2.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Moisture and Water Activity
3.2. pH, Titratable Acidity and Total Solids Content
3.3. Electrical Conductivity
3.4. Color Parameters, Browning and Whitening Index
3.5. Sensory Evaluation
3.6. Correlations of Measured Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021; p. 12. [Google Scholar]
- FruitLogistica. European Statistics Handbook; Messe Berlin GmbH: Berlin, Germany, 2021. [Google Scholar]
- EC. EU Agricultural Outlook for Markets, Income and Environment, 2020–2030; European Commission, DG Agriculture and Rural Development: Brussels, Belgium, 2020. [Google Scholar]
- Leahu, A.; Ghinea, C.; Oroian, M.A. Osmotic dehydration of apple and pear slices: Color and chemical characteristics. Ovidius Univ. Ann. Chem. 2020, 31, 73–79. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Kazimierczak, R.; Ponder, A.; Kopczyńska, K.; Hallmann, E. Selected Antioxidants in Organic vs. Conventionally Grown Apple Fruits. Appl. Sci. 2020, 10, 2997. [Google Scholar]
- Butkeviciute, A.; Viskelis, J.; Viskelis, P.; Liaudanskas, M.; Janulis, V. Changes in the Biochemical Composition and Physicochemical Properties of Apples Stored in Controlled Atmosphere Conditions. Appl. Sci. 2021, 11, 6215. [Google Scholar] [CrossRef]
- Koutsos, A.; Tuohy, K.M.; Lovegrove, J.A. Apples and cardiovascular health—Is the gut microbiota a core consideration? Nutrients 2015, 7, 3959–3998. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Kamińska-Dwórznicka, A.; Ostrowska-Ligęza, E.; Górska, A.; Wirkowska-Wojdyła, M.; Mańko-Jurkowska, D.; Górska, A.; Bryś, J. Application of Different Compositions of Apple Puree Gels and Drying Methods to Fabricate Snacks of Modified Structure, Storage Stability and Hygroscopicity. Appl. Sci. 2021, 11, 10286. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Zhu, C.; Wei, M. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT-Food Sci. Technol. 2022, 154, 112829. [Google Scholar] [CrossRef]
- Chauhan, O.P.; Singh, A.; Singh, A.; Raju, P.S.; Bawa, A.S. Effects of Osmotic Agents on Colour, Textural, Structural, Thermal, and Sensory Properties of Apple Slices. Int. J. Food Prop. 2011, 14, 1037–1048. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Samborska, K.; Tywonek, M.; Lenart, A. Development of apple chips technology. Heat Mass Transf. 2018, 54, 3573–3586. [Google Scholar] [CrossRef] [Green Version]
- Figiel, A. Dehydration of apples by a combination of convective and vacuum-microwave drying. Pol. J. Food Nutr. Sci. 2007, 57, 131–135. [Google Scholar]
- Royen, M.J.; Noori, A.W.; Haydary, J. Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes 2020, 8, 1562. [Google Scholar] [CrossRef]
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of Dried Fruits Is Associated with Greater Intakes of Underconsumed Nutrients, Higher Total Energy Intakes, and Better Diet Quality in US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Carughi, A.; Feeney, M.J.; Kris-Etherton, P.; Fulgoni, V., 3rd; Kendall, C.W.; Bulló, M.; Webb, D. Pairing nuts and dried fruit for cardiometabolic health. Nutr. J. 2016, 15, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler, M.J.; Gibson, S.; Whelan, K.; Ha, M.A.; Lovegrove, J.; Higgs, J. Dried fruit and public health—What does the evidence tell us? Int. J. Food Sci. Nutr. 2019, 70, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, O.; Malvandi, A.; Vargas, L.; Feng, H. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 2021, 73, 105510. [Google Scholar] [CrossRef] [PubMed]
- Nirmaan, A.M.C.; Rohitha Prasantha, B.D.; Peiris, B.L. Comparison of microwave drying and oven-drying techniques for moisture determination of three paddy (Oryza sativa L.) varieties. Chem. Biol. Technol. Agric. 2020, 7, 1. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, S.; Li, D.; Law, C.L.; Han, Y.; Tao, Y.; Kiani, H.; Liu, D. Dehydration of apple slices by sequential drying pretreatments and airborne ultrasound-assisted air drying: Study on mass transfer, profiles of phenolics and organic acids and PPO activity. Innov. Food Sci. Emerg. Technol. 2022, 75, 102871. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Deng, H.; Song, X.; Zhang, W.; Wu, S.; Wang, J. Influence of Pretreatments on Microwave Vacuum Drying Kinetics, Physicochemical Properties and Sensory Quality of Apple Slices. Pol. J. Food Nutr. Sci. 2019, 69, 297–306. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Dekker, M.; Fogliano, V.; Verkerk, R. Effect of Vacuum Frying on Quality Attributes of Fruits. Food Eng. Rev. 2018, 10, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.C.; Guiné, R.P.F.; Gonçalves, J.C. Drying Kinetics and Product Quality for Convective Drying of Apples (cvs. Golden Delicious and Granny Smith). Int. J. Fruit Sci. 2015, 15, 54–78. [Google Scholar] [CrossRef]
- Marzec, A.; Kowalska, H.; Kowalska, J.; Domian, E.; Lenart, A. Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit. Molecules 2020, 25, 5146. [Google Scholar] [CrossRef] [PubMed]
- Prawiranto, K.; Defraeye, T.; Derome, D.; Verboven, P.; Nicolai, B.; Carmeliet, J. New insights into the apple fruit dehydration process at the cellular scale by 3D continuum modelling. J. Food Eng. 2018, 239, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Kidoń, M.; Grabowska, J. Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT 2021, 136, 110302. [Google Scholar] [CrossRef]
- Singh, A.P.; Sahni, D.D.; Dubey, A. Experimental study of thermal effect of drying, heating, blowing machine with different stage. Int. J. Res.-Granthaalayah 2016, 4, 104–109. [Google Scholar] [CrossRef]
- Nyangena, I.; Owino, W.; Ambuko, J.; Imathiu, S. Effect of selected pretreatments prior to drying on physical quality attributes of dried mango chips. J. Food. Sci. Technol. 2019, 56, 3854–3863. [Google Scholar] [CrossRef]
- ElHana, A.N.H. Microwave drying of apple. Misr J. Agric. Eng. 2008, 25, 980–1003. [Google Scholar]
- Fahim, U.; Kang, M. Impact of air flow rate on drying of apples and performance assessment of parabolic trough solar collector. Appl. Therm. Eng. 2017, 127, 275–280. [Google Scholar]
- Seiiedlou, S.; Ghasemzadeh, H.R.; Hamdami, N.; Talati, F.; Moghaddam, M. Convective drying of apple: Mathematical modeling and determination of some quality parameters. Int. J. Agric. Biol. 2010, 12, 171–178. [Google Scholar]
- Önal, B.; Adiletta, G.; Crescitelli, A.; Di Matteo, M.; Russo, P. Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food Bioprod. Process. 2019, 115, 87–99. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S. Physical and sensory properties of ready to eat apple chips produced by osmo-convective drying. J. Food Sci. Technol. 2014, 51, 3691–3701. [Google Scholar] [CrossRef] [Green Version]
- Rydzak, L.; Kobus, Z.; Nadulski, R.; Wilczyński, K.; Pecyna, A.; Santoro, F.; Sagan, A.; Starek-Wójcicka, A.; Krzywicka, M. Analysis of Selected Physicochemical Properties of Commercial Apple Juices. Processes 2020, 8, 1457. [Google Scholar] [CrossRef]
- Sadler, G.D.; Murphy, P. pH and Titratable Acidity. In Food Anal., 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 219–238. [Google Scholar]
- Karakasova, L.; Stefanovska, E.; Babanovska-Milenkovska, F.; Stamatovska, V.; Durmishi, N.; Culeva, B. Comparing the quality properties of fresh and dried apple fruit—Varieties Pinova and Red Delicious. J. Food Agric. Environ. 2019, 73, 36–45. [Google Scholar]
- Khan, S.A.; Beekwilder, J.; Schaart, J.G.; Mumm, R.; Soriano, J.M.; Jacobsen, E.; Schouten, H.J. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genet. Genomes 2013, 9, 475–487. [Google Scholar] [CrossRef]
- Leahu, A.; Oroian, M.; Ropciuc, S. Total phenolics of fresh and frozen minor berries and their antioxidant properties. Food Environ. Saf. 2014, 13, 87–93. [Google Scholar]
- Prisacaru, A.E.; Ghinea, C.; Apostol, L.C.; Ropciuc, S.; Ursachi, F. Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after in Vitro Digestion. Processes 2021, 9, 1193. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Ghinea, C.; Leahu, A.; Priscarau, A.E.; Cojocaru, M.; Ladariu, V. Physico-chemical and sensory analyzes of muffins obtained with almond flour and coconut oil. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Vienna, Austria, 9–11 December 2019; Volume 19, pp. 165–172. [Google Scholar]
- Alibas, I.; Yilmaz, A. Microwave and convective drying kinetics and thermal properties of orange slices and effect of drying on some phytochemical parameters. J. Therm. Anal. Calorim. 2021. [Google Scholar] [CrossRef]
- Cuccurullo, G.; Giordano, L.; Metallo, A.; Cinquanta, L. Drying rate control in microwave assisted processing of sliced apples. Biosyst. Eng. 2018, 170, 24–30. [Google Scholar] [CrossRef]
- Ackbarali, D.; Mahara, R. Sensory Evaluation as a Tool in Determining Acceptability of Innovative Products Developed by Undergraduate Students in Food Science and Technology at The University of Trinidad and Tobago. J. Curric. Teach. 2014, 3, 10–27. [Google Scholar]
- Cliff, M.A.; Toivonen, P.M.; Forney, C.F.; Lu, C. Quality of fresh-cut apple slices stored in solid and micro-perforated film packages having contrasting O2 headspace atmospheres. Postharvest Biol. Technol. 2010, 58, 254–261. [Google Scholar] [CrossRef]
- Hussain, P.R.; Wani, I.A.; Rather, S.A.; Suradkar, P.; Ayob, O. Effect of post-processing radiation treatment on physico-chemical, microbiological and sensory quality of dried apple chips during storage. Radiat. Phys. Chem. 2021, 182, 109367. [Google Scholar] [CrossRef]
- Mohammed, S.; Edna, M.; Siraj, K. The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples. Heliyon 2020, 6, e04163. [Google Scholar] [CrossRef]
- Singer, J.M.; Pedroso-de-Lima, A.C.; Tanaka, N.I.; González-López, V.A. To triplicate or not to triplicate? Chemom. Intell. Lab. Syst. 2007, 86, 82–85. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Preti, R.; Tarola, A.M. Study of polyphenols, antioxidant capacity and minerals for the valorisation of ancient apple cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- Ergün, Z. Determination of Biochemical Contents of Fresh, Oven-Dried, and Sun-Dried Peels and Pulps of Five Apple Cultivars (Amasya, Braeburn, Golden Delicious, Granny Smith, and Starking). J. Food Qual. 2021, 2021, 9916694. [Google Scholar] [CrossRef]
- Minitab. Interpret the Key Results for One-Way ANOVA. 2022. Available online: https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/anova/how-to/one-way-anova/interpret-the-results/key-results/ (accessed on 1 February 2022).
- Iordănescu, O.A.; Iuga, C.; Hădărugă, N.; Becherescu, A.; Drăgunescu, A.; Băla, M.; Scedei, D. Research on fruit quality of several apple cultivars from different locations in the area of Western Romania. Sci. Pap. Ser. B Hortic. 2021, LXV, 1129–1138. [Google Scholar]
- Shi, J.; Pan, Z.; McHugh, T.H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT-Food Sci. Technol. 2008, 41, 1962–1972. [Google Scholar] [CrossRef]
- Klewicki, R.; Konopacka, D.; Uczciwek, M.; Irzyniec, Z.; Piasecka, E.; Bonazzi, C. Sorption isotherms for osmo-convectively-dried and osmo-freeze-dried apple, sour cherry, and blackcurrant (ISAFRUIT Special Issue). J. Hortic. Sci. Biotechnol. 2009, 84, 75–79. [Google Scholar] [CrossRef]
- Antal, T. Comparative study of three drying methods: Freeze, hot air assisted freeze and infrared-assisted freeze modes. Agron. Res. 2015, 13, 863–878. [Google Scholar]
- Patras, A. Quality parameters of apple fruits marketed in Iaşi. Sci. Pap. Ser. B Hortic. 2018, 61, 281–286. [Google Scholar]
- Owusu, J.; Ma, H.; Wang, Z.; Amissah, A. Effect of Drying Methods on Physicochemical Properties of Pretreated Tomato (lycopersicon esculentum mill.). Slices. Croat. J. Food Tehnol. Biotech. Nutr. 2012, 7, 106–111. [Google Scholar]
- Nour, V.; Trandafir, I.; Ionica, M.E. Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Not. Bot. Horti. Agrobot. 2010, 38, 228–233. [Google Scholar]
- Egea, M.B.; Ferreira da Silva, R.S.S.; Yamashita, F.; Borsato, D. Optimizing Dehydration of Apples Malus Domestica with Fructo-Oligosaccharide Incorporation. Braz. Arch. Biol. Technol. 2012, 55, 751–762. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Li, J.; Qin, S.; Yang, W.; Ma, X.; Qiao, X.; Yang, B. Effects of Genetic Background and Altitude on Sugars, Malic Acid and Ascorbic Acid in Fruits of Wild and Cultivated Apples (Malus sp.). Foods 2021, 10, 2950. [Google Scholar] [CrossRef]
- Varghese, K.S.; Pandey, M.C.; Radhakrishna, K.; Bawa, A.S. Technology, applications and modelling of ohmic heating: A review. J. Food Sci. Technol. 2014, 51, 2304–2317. [Google Scholar] [CrossRef] [Green Version]
- Banti, M. Review on Electrical Conductivity in Food, the Case in Fruits and Vegetables. World J. Food Sci. Technol. 2020, 4, 80–89. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Anal., 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 573–586. [Google Scholar]
- Coklar, H.; Akbulut, M.; Kilinc, S.; Yildirim, A.; Alhassan, I. Effect of Freeze, Oven and Microwave Pretreated Oven Drying on Color, Browning Index, Phenolic Compounds and Antioxidant Activity of Hawthorn (Crataegus orientalis) Fruit. Not. Bot. Horti. Agrobot. 2018, 46, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.M.; Kwon, E.-B.; Lee, B.; Kim, C.Y. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Wang, A.; Jiang, Y.; Ban, Z. Effect of heat treatment on physiochemical, colour, antioxidant and microstructural characteristics of apples during storage. Int. J. Food Sci. Technol. 2013, 48, 727–734. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
Sample | Titratable Acidity (TA), % Malic Acid | Sample | Titratable Acidity (TA), % Malic Acid | Sample | Titratable Acidity (TA), % Malic Acid | Sample | Titratable Acidity (TA), % Malic Acid | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dried apple chip samples | S1 | 0.72 c ± 0.11 | Dried apple chip samples (7th day) | S1 | 0.72 cd ± 0.02 | Dried apple chip samples (14th day) | S1 | 0.73 c ± 0.05 | Dried apple chip samples (21st day) | S1 | 0.80 b ± 0.05 |
S2 | 0.95 a ± 0.15 | S2 | 0.95 a ± 0.09 | S2 | 0.97 a ± 0.01 | S2 | 1.04 a ± 0.05 | ||||
G1 | 0.63 d ± 0.01 | G1 | 0.65 e ± 0.05 | G1 | 0.67 d ± 0.01 | G1 | 0.75 b ± 0.05 | ||||
G2 | 0.71 c ± 0.03 | G2 | 0.74 c ± 0.05 | G2 | 0.80 b ± 0.02 | G2 | 0.81 b ± 0.01 | ||||
F1 | 0.87 b ± 0.05 | F1 | 0.91 b ± 0.01 | F1 | 0.95 a ± 0.00 | F1 | 1.04 a ± 0.06 | ||||
F2 | 0.71 c ± 0.15 | F2 | 0.71 d ± 0.05 | F2 | 0.72 c ± 0.05 | F2 | 0.75 b ± 0.01 |
Sample | L* | a* | b* | ΔE | BI | WI | |
---|---|---|---|---|---|---|---|
Fresh apple samples | S0 | 51.93 a ± 1.13 | −1.42 a ± 0.14 | 18.36 b ± 0.45 | - | 40.27 b ± 1.23 | 48.52 a ± 1.14 |
G0 | 64.28 a ± 4.86 | −2.29 a ± 0.55 | 27.30 a ± 1.64 | - | 50.63 a ± 0.94 | 54.85 a ± 2.94 | |
F0 | 57.7 a ± 7.03 | −3.47 b ± 0.33 | 19.83 b ± 1.51 | - | 36.29 b ± 1.09 | 53.02 a ± 5.73 | |
Dried apple chip samples | S1 | 57.69 e ± 2.42 | 10.62 a ± 0.93 | 20.56 c ± 0.40 | 40.17 a ± 2.32 | 57.02 a ± 2.28 | 51.76 d ± 2.28 |
S2 | 67.39 c ± 0.93 | 5.09 c ± 0.19 | 24.41 b ± 0.62 | 32.81 c ± 1.08 | 49.63 b ± 1.27 | 58.94 c ± 1.09 | |
G1 | 71.83 b ± 0.43 | 3.02 d ± 0.33 | 24.77 b ± 0.81 | 29.47 de ± 0.40 | 44.42 b ± 0.67 | 62.36 ab ± 0.38 | |
G2 | 76.10 a ± 1.05 | 2.09 d ± 0.37 | 27.56 a ± 0.47 | 28.76 e ± 0.26 | 45.86 b ± 0.13 | 63.44 a ± 0.36 | |
F1 | 65.85 cd ± 0.94 | 12.08 a ± 0.32 | 17.59 d ± 0.29 | 32.49 cd ± 0.93 | 44.05 b ± 0.84 | 59.73 bc ± 0.95 | |
F2 | 63.65 d ± 1.01 | 7.10 b ± 0.80 | 25.53 b ± 0.29 | 36.78 b ± 1.08 | 58.42 a ± 1.54 | 55.01 d ± 1.06 | |
Dried apple chip samples (7th day) | S1 | 47.39 c ± 1.17 | 9.31 a ± 0.65 | 18.39 d ± 0.76 | 48.41 a ± 0.95 | 62.73 ab ± 1.51 | 43.48 c ± 0.97 |
S2 | 71.51 a ± 3.01 | 3.98 b ± 1.12 | 25.44 ab ± 1.42 | 30.32 c ± 3.27 | 47.39 cd ± 3.93 | 61.58 a ± 3.29 | |
G1 | 61.63 b ± 1.01 | 9.14 a ± 0.91 | 25.96 ab ± 0.31 | 39.09 b ± 0.78 | 64.44 a ± 0.93 | 52.77 b ± 0.77 | |
G2 | 70.31 a ± 0.40 | 3.73 b ± 0.22 | 26.94 a ± 0.73 | 32.22 c ± 0.64 | 51.09 cd ± 1.10 | 59.72 a ± 0.63 | |
F1 | 58.09 b ± 1.26 | 8.21 a ± 0.03 | 21.13 c ± 0.48 | 39.43 b ± 0.90 | 54.84 bc ± 0.20 | 52.34 b ± 0.90 | |
F2 | 73.57 a ± 2.86 | 4.05 b ± 0.78 | 24.52 b ± 0.99 | 28.33 c ± 1.37 | 43.76 d ± 0.42 | 63.65 a ± 1.53 | |
Dried apple chip samples (14th day) | S1 | 52.22 d ± 2.20 | 11.16 a ± 0.55 | 22.43 c ± 1.34 | 45.87 a ± 1.53 | 70.72 a ± 0.28 | 46.01 d ± 1.49 |
S2 | 75.96 a ± 0.13 | 3.23 d ± 0.30 | 27.11 a ± 0.17 | 28.59 c ± 0.19 | 46.24 c ± 0.33 | 63.62 b ± 0.18 | |
G1 | 69.91 b ± 0.27 | 4.47 c ± 0.41 | 25.72 ab ± 0.45 | 31.69 b ± 0.37 | 49.58 b ± 0.80 | 60.16 c ± 0.34 | |
G2 | 77.17 a ± 0.80 | 0.64 e ± 0.15 | 24.28 b ± 0.29 | 25.37 d ± 0.67 | 37.46 d ± 0.60 | 66.66 a ± 0.71 | |
F1 | 64.49 c ± 1.13 | 8.09 b ± 0.17 | 20.52 d ± 0.34 | 33.65 b ± 0.75 | 46.93 c ± 0.17 | 58.19 c ± 0.77 | |
F2 | 63.78 c ± 0.87 | 2.77 d ± 0.20 | 19.90 d ± 0.11 | 32.98 b ± 0.84 | 39.82 d ± 0.66 | 58.57 c ± 0.83 | |
Dried apple chip samples (21st day) | S1 | 52.26 e ± 1.03 | 9.84 b ± 0.75 | 20.02 e ± 0.42 | 44.57 a ± 0.98 | 61.34 a ± 1.42 | 47.29 e ± 0.95 |
S2 | 69.63 b ± 1.09 | 5.97 c ± 0.10 | 26.31 a ± 0.60 | 32.58 d ± 0.54 | 52.78 b ± 0.48 | 59.36 b ± 0.59 | |
G1 | 64.76 c ± 0.78 | 6.19 c ± 0.24 | 23.70 bc ± 0.19 | 34.67 c ± 0.58 | 51.72 b ± 0.40 | 57.07 c ± 0.58 | |
G2 | 72.39 a ± 0.08 | 3.31 d ± 0.03 | 24.75 b ± 0.03 | 29.09 e ± 0.07 | 44.27 c ± 0.07 | 62.77 a ± 0.07 | |
F1 | 58.65 d ± 0.57 | 12.42 a ± 0.53 | 21.44 d ± 0.25 | 40.23 b ± 0.69 | 60.30 a ± 0.96 | 51.77 d ± 0.68 | |
F2 | 68.56 b ± 1.03 | 3.75 d ± 0.51 | 23.30 c ± 0.72 | 31.03 d ± 0.69 | 44.69 c ± 1.06 | 60.67 b ± 0.70 |
M | aw | pH | TA | TSS | EC | L* | a* | b* | ΔE | BI | |
---|---|---|---|---|---|---|---|---|---|---|---|
aw | 0.997 * | ||||||||||
pH | −0.722 | −0.668 | |||||||||
TA | −0.246 | −0.173 | 0.849 | ||||||||
TSS | −0.959 | −0.935 | 0.888 | 0.511 | |||||||
EC | 0.995 | 0.999 * | −0.646 | −0.144 | −0.924 | ||||||
L* | −0.858 | −0.894 | 0.263 | −0.287 | 0.676 | −0.906 | |||||
a* | 0.264 | 0.336 | 0.477 | 0.870 | 0.020 | 0.363 | −0.723 | ||||
b* | 0.007 | −0.068 | −0.697 | −0.971 | −0.290 | −0.097 | 0.508 | −0.963 | |||
ΔE | 0.927 | 0.953 | −0.410 | 0.134 | −0.783 | 0.961 | −0.988 | 0.606 | −0.368 | ||
BI | 0.997 * | 0.999 * | −0.664 | −0.168 | −0.933 | 0.999 * | −0.896 | 0.341 | −0.073 | 0.954 | |
WI | −0.941 | −0.963 | 0.444 | −0.097 | 0.806 | −0.971 | 0.981 | −0.576 | 0.333 | −0.999 * | −0.965 |
M | aw | pH | TA | TSS | EC | L* | a* | b* | ΔE | BI | |
---|---|---|---|---|---|---|---|---|---|---|---|
aw | 0.473 | ||||||||||
pH | −0.571 | 0.453 | |||||||||
TA | −0.373 | −0.994 | −0.549 | ||||||||
TSS | 0.485 | −0.541 | −0.995 | 0.631 | |||||||
EC | 0.819 | −0.119 | −0.939 | 0.228 | 0.899 | ||||||
L* | 0.988 | 0.331 | −0.692 | −0.225 | 0.615 | 0.898 | |||||
a* | −0.964 | −0.222 | 0.769 | 0.113 | −0.700 | −0.942 | −0.994 | ||||
b* | 0.879 | 0.836 | −0.110 | −0.771 | 0.008 | 0.445 | 0.794 | −0.72 | |||
ΔE | −0.930 | −0.116 | 0.833 | 0.006 | −0.772 | −0.972 | −0.976 | 0.994 | −0.641 | ||
BI | −0.820 | 0.116 | 0.938 | −0.225 | −0.898 | −0.999 * | −0.899 | 0.943 | −0.447 | 0.973 | |
WI | 0.942 | 0.149 | −0.814 | −0.039 | 0.751 | 0.964 | 0.982 | −0.997 * | 0.666 | −0.999 * | −0.965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars. Appl. Sci. 2022, 12, 2350. https://doi.org/10.3390/app12052350
Ghinea C, Prisacaru AE, Leahu A. Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars. Applied Sciences. 2022; 12(5):2350. https://doi.org/10.3390/app12052350
Chicago/Turabian StyleGhinea, Cristina, Ancuta Elena Prisacaru, and Ana Leahu. 2022. "Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars" Applied Sciences 12, no. 5: 2350. https://doi.org/10.3390/app12052350
APA StyleGhinea, C., Prisacaru, A. E., & Leahu, A. (2022). Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars. Applied Sciences, 12(5), 2350. https://doi.org/10.3390/app12052350