Feasibility and Effect of a Wearable Motion Sensor Device in Facilitating In-Home Rehabilitation Program in Patients after Total Knee Arthroplasty: A Preliminary Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Motion Sensor Device (MSD)
2.1.1. Wearable IMU-Based Sensors
2.1.2. A Mobile Phone App for Patients
2.1.3. A Mobile Pad App for Physiotherapists and Physicians
2.2. Study Protocol
2.2.1. First Investigation: Evaluating the Reliability of Knee ROM Measurements and the Measurements of Time Spent for Completing 5TSST Using the MSD
Angle Measurements
Time for Completing 5TSST
2.2.2. Second Investigation: Determining the Feasibility and User Experience of Using the MSD for the Post-TKA In-Home Rehabilitation
Outcome Measurement
Instruments
- Measurement of knee function
- Measurement of pain
- Measurement of ECR
User Experience
- Helpfulness of the MSD in assisting with rehabilitation: “On a scale of 0 to 10 (0 indicating the least helpful and 10 indicating the most helpful), how would you rate the helpfulness of the wearable motion sensor device in assisting your home-based exercises after knee replacement?”
- Ease of operability for the MSD: “On a scale of 0 to 10 (0 indicating the most difficult and 10 means the easiest), how would you rate the ease of operability for the motion sensor device in your daily exercise?”
- Satisfaction with the app design: “On a scale of 0 to 10 (0 indicating the least satisfied and 10 means the most satisfied), how satisfied are you with the app’s design and visual appeal?”
- Interests for future use: “On a scale of 0 to 10 (0 indicating the least interested and 10 means the most interested), how interested would you be in using the device after it is fully developed in assisting your future rehabilitation if needed?”
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llopart-Carles, N.; García-López, S.; Rejas-Gutierrez, J. Disability-adjusted life expectancy lost due to pain severity and usual analgesic treatment among older adults with osteoarthritis in Spain. Aging Clin. Exp. Res. 2020, 33, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jordan, J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopka, J.F.; Lee, Y.Y.; Su, E.P.; McLawhorn, A.S. Quality-Adjusted Life Years After Hip and Knee Arthroplasty: Health-Related Quality of Life After 12,782 Joint Replacements. JBJS Open Access 2018, 3, e0007. [Google Scholar] [CrossRef] [PubMed]
- Inacio, M.C.S.; Paxton, E.W.; Graves, S.E.; Namba, R.S.; Nemes, S. Projected increase in total knee arthroplasty in the United States—An alternative projection model. Osteoarthr. Cartil. 2017, 25, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Artz, N.; Dixon, S.; Wylde, V.; Beswick, A.; Blom, A.; Gooberman-Hill, R. Physiotherapy provision following discharge after total hip and total knee replacement: A survey of current practice at high-volume NHS hospitals in England and wales. Musculoskelet. Care 2013, 11, 31–38. [Google Scholar] [CrossRef]
- Mahomed, N.N.; Davis, A.M.; Hawker, G.; Badley, E.; Davey, J.R.; Syed, K.A.; Coyte, P.C.; Gandhi, R.; Wright, J.G. Inpatient compared with home-based rehabilitation following primary unilateral total hip or knee replacement: A randomized controlled trial. J. Bone Jt. Surg. Am. 2008, 90, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
- Kauppila, A.M.; Kyllönen, E.; Ohtonen, P.; Hämäläinen, M.; Mikkonen, P.; Laine, V.; Siira, P.; Mäki-Heikkilä, P.; Sintonen, H.; Leppilahti, J.; et al. Multidisciplinary rehabilitation after primary total knee arthroplasty: A randomized controlled study of its effects on functional capacity and quality of life. Clin. Rehabil. 2010, 24, 398–411. [Google Scholar] [CrossRef]
- Artz, N.; Elvers, K.T.; Lowe, C.M.; Sackley, C.; Jepson, P.; Beswick, A.D. Effectiveness of physiotherapy exercise following total knee replacement: Systematic review and meta-analysis. BMC Musculoskelet. Disord. 2015, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Moffet, H.; Collet, J.P.; Shapiro, S.H.; Paradis, G.; Marquis, F.; Roy, L. Effectiveness of intensive rehabilitation on functional ability and quality of life after first total knee arthroplasty: A single-blind randomized controlled trial. Arch. Phys. Med. Rehabil. 2004, 85, 546–556. [Google Scholar] [CrossRef]
- Michard, F.; Gan, T.J.; Kehlet, H. Digital innovations and emerging technologies for enhanced recovery programmes. Br. J. Anaesth. 2017, 119, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, E.; Bettger, J.P.; Goode, A.P. Insurance Coverage, Costs, and Barriers to Care for Outpatient Musculoskeletal Therapy and Rehabilitation Services. N. C. Med. J. 2017, 78, 312–314. [Google Scholar] [PubMed]
- Buhagiar, M.A.; Naylor, J.M.; Harris, I.A.; Xuan, W.; Kohler, F.; Wright, R.; Fortunato, R. Effect of Inpatient Rehabilitation vs a Monitored Home-Based Program on Mobility in Patients With Total Knee Arthroplasty: The HIHO Randomized Clinical Trial. JAMA 2017, 317, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Withers, T.; Luben, R.; Sackley, C.; Jones, A.; MacGregor, A. Changes in physical activity following total hip or knee arthroplasty: A matched case-control study from the EPIC-Norfolk cohort. Clin. Rehabil. 2017, 31, 1548–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassett, S.F.; Prapavessis, H. Home-Based Physical Therapy Intervention With Adherence-Enhancing Strategies Versus Clinic-Based Management for Patients With Ankle Sprains. Phys. Ther. 2007, 87, 1132–1143. [Google Scholar] [CrossRef]
- Wang, Q.; Markopoulos, P.; Yu, B.; Chen, W.; Timmermans, A. Interactive wearable systems for upper body rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Ongvisatepaiboon, K.; Chan, J.H.; Vanijja, V. Smartphone-Based Tele-Rehabilitation System for Frozen Shoulder Using a Machine Learning Approach. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 811–815. [Google Scholar]
- Timmermans, A.A.; Seelen, H.A.; Geers, R.P.; Saini, P.K.; Winter, S.; te Vrugt, J.; Kingma, H. Sensor-based arm skill training in chronic stroke patients: Results on treatment outcome, patient motivation, and system usability. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 284–292. [Google Scholar] [CrossRef]
- Lemmens, R.J.; Janssen-Potten, Y.J.; Timmermans, A.A.; Smeets, R.J.; Seelen, H.A. Recognizing complex upper extremity activities using body worn sensors. PLoS ONE 2015, 10, e0118642. [Google Scholar] [CrossRef] [Green Version]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Lin, C.Y.; Tsai, M.J.; Chuang, T.Y.; Lee, O.K. Wearable Motion Sensor Device to Facilitate Rehabilitation in Patients With Shoulder Adhesive Capsulitis: Pilot Study to Assess Feasibility. J. Med. Internet Res. 2020, 22, e17032. [Google Scholar] [CrossRef]
- Open Source IMU and AHRS Algorithms. Available online: https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/ (accessed on 4 January 2022).
- Medina-Mirapeix, F.; Vivo-Fernández, I.; López-Cañizares, J.; García-Vidal, J.A.; Benítez-Martínez, J.C.; Del Baño-Aledo, M.E. Five times sit-to-stand test in subjects with total knee replacement: Reliability and relationship with functional mobility tests. Gait Posture 2018, 59, 258–260. [Google Scholar] [CrossRef]
- Boonstra, M.C.; Schwering, P.J.A.; De Waal Malefijt, M.C.; Verdonschot, N. Sit-to-Stand Movement as a Performance-Based Measure for Patients With Total Knee Arthroplasty. Phys. Ther. 2010, 90, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.M.; Escobar, A.; Arostegui, I.; Bilbao, A.; Azkarate, J.; Goenaga, J.I.; Arenaza, J.C. Health-related quality of life and appropriateness of knee or hip joint replacement. Arch. Intern. Med. 2006, 166, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Flandry, F.; Hunt, J.P.; Terry, G.C.; Hughston, J.C. Analysis of subjective knee complaints using visual analog scales. Am. J. Sports Med. 1991, 19, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Sluijs, E.M.; Kok, G.J.; van der Zee, J. Correlates of exercise compliance in physical therapy. Phys. Ther. 1993, 73, 771–782; discussion 783–776. [Google Scholar] [CrossRef]
- Escolar-Reina, P.; Medina-Mirapeix, F.; Gascón-Cánovas, J.J.; Montilla-Herrador, J.; Jimeno-Serrano, F.J.; de Oliveira Sousa, S.L.; del Baño-Aledo, M.E.; Lomas-Vega, R. How do care-provider and home exercise program characteristics affect patient adherence in chronic neck and back pain: A qualitative study. BMC Health Serv. Res. 2010, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Toogood, P.A.; Abdel, M.P.; Spear, J.A.; Cook, S.M.; Cook, D.J.; Taunton, M.J. The monitoring of activity at home after total hip arthroplasty. Bone Jt. J. 2016, 98-b, 1450–1454. [Google Scholar] [CrossRef]
- Bahadori, S.; Immins, T.; Wainwright, T.W. A review of wearable motion tracking systems used in rehabilitation following hip and knee replacement. J. Rehabil. Assist. Technol. Eng. 2018, 5. [Google Scholar] [CrossRef]
- Kwasnicki, R.M.; Ali, R.; Jordan, S.J.; Atallah, L.; Leong, J.J.; Jones, G.G.; Cobb, J.; Yang, G.Z.; Darzi, A. A wearable mobility assessment device for total knee replacement: A longitudinal feasibility study. Int. J. Surg. 2015, 18, 14–20. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Chen, K.H.; Liu, K.C.; Hsu, S.J.; Chan, C.T. Data Collection and Analysis Using Wearable Sensors for Monitoring Knee Range of Motion after Total Knee Arthroplasty. Sensors 2017, 17, 418. [Google Scholar] [CrossRef]
- Itokazu, M.; Uemura, S.; Aoki, T.; Takatsu, T. Analysis of rising from a chair after total knee arthroplasty. Bull. Hosp. Jt. Dis. 1998, 57, 88–92. [Google Scholar] [PubMed]
- Oosterhof, B.; Dekker, J.H.; Sloots, M.; Bartels, E.A.; Dekker, J. Success or failure of chronic pain rehabilitation: The importance of good interaction—A qualitative study under patients and professionals. Disabil. Rehabil. 2014, 36, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Makhni, M.C.; Riew, G.J.; Sumathipala, M.G. Telemedicine in Orthopaedic Surgery: Challenges and Opportunities. J. Bone Jt. Surgery. Am. 2020, 102, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Prvu Bettger, J.; Green, C.L.; Holmes, D.N.; Chokshi, A.; Mather, R.C., 3rd; Hoch, B.T.; de Leon, A.J.; Aluisio, F.; Seyler, T.M.; Del Gaizo, D.J.; et al. Effects of Virtual Exercise Rehabilitation In-Home Therapy Compared with Traditional Care After Total Knee Arthroplasty: VERITAS, a Randomized Controlled Trial. J. Bone Jt. Surgery. Am. 2020, 102, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelrod, L.; Fitzpatrick, G.; Burridge, J.; Mawson, S.; Smith, P.; Rodden, T.; Ricketts, I. The reality of homes fit for heroes: Design challenges for rehabilitation technology at home. J. Assist. Technol. 2009, 3, 35–43. [Google Scholar] [CrossRef]
12. Volunteers | Knee Flexion within the Targeted Range of Angle | Time Spent for Completing 5TSST (n = 12) | |||
---|---|---|---|---|---|
Angle < 60° (n = 12) | Angle ≈ 90° (n = 12) | Angle > 90° (n = 12) | Overall (n = 36) | ||
Examiner 1 | 34.7° ± 9.7° | 89.6° ± 5.3° | 122.8° ± 10.4° | 82.4° ± 37.8° | 11.2 ± 1.7 |
Examiner 2 | 37.2° ± 8.3° | 92.3° ± 7.1° | 124.2° ± 10.4° | 84.6° ± 37.4° | 11.2 ± 1.5 |
Motion sensor | 35.0° ± 9.4° | 92.9° ± 8.6° | 123.5° ± 11.6° | 83.8° ± 38.4° | 11.3 ± 1.6 |
ICC among examiners | 0.924 | 0.862 | 0.934 | 0.996 | 0.996 |
MAR Group (n = 6) | HE Group (n = 6) | p-Value | |
---|---|---|---|
Age | 70.3 ± 2.8 | 70.2 ± 5.7 | 0.95 |
Body mass index | 26.9 ± 2.6 | 28.6 ± 4.3 | 0.52 |
Sex | |||
male | 3 (50.0%) | 2 (33.3%) | 1 |
female | 3 (50.0%) | 4 (66.7%) | |
Education | |||
Elementary | 5 (83.3%) | 3 (50.0%) | 0.22 |
Senior high | 1 (16.7%) | 2 (33.3%) | |
Bachelor degree and higher | 0 (0.0%) | 1 (16.7%) | |
Operated side | |||
left | 2 (33.3%) | 4 (66.7%) | 0.57 |
right | 4 (66.7%) | 2 (33.3%) | |
Baseline condition (before intervention) | |||
Maximal knee extension (°) | 28.2 ± 8.6 | 24 ± 13.7 | 0.40 |
Maximal knee flexion (°) | 98.2 ± 9.6 | 93.5 ± 8.8 | 0.62 |
VAS | 3.7 ± 1.2 | 5.2 ± 1.7 | 0.11 |
WOMAC | 36.5 ± 15.5 | 41.7 ± 15.7 | 0.58 |
5TSST | |||
Total time spending (s) | 22.2 ± 9.2 | 27.1 ± 11.7 | 0.42 |
Maximal angular velocity (°/s) | 100.5 ± 35.4 | 94.5 ± 35.6 | 0.78 |
Average angular velocity (°/s) | 45.5 ± 14.4 | 31.5 ± 12.4 | 0.10 |
Baseline | 1 Month Follow-Up | p-Value | 2-Month Follow-Up | p-Value | |||
---|---|---|---|---|---|---|---|
Versus Baseline | Between Groups a | Versus Baseline | Between Groups b | ||||
MAR group (n = 6) | |||||||
Maximal knee extension (°) | 28.2 ± 8.6 | 13.0 ± 5.8 | 0.03 | 0.17 | 9.3 ± 5.2 | 0.03 | 0.04 |
Maximal knee flexion (°) | 98.2 ± 9.6 | 110.8 ± 14.6 | 0.03 | 0.42 | 112.7 ± 11.8 | 0.03 | 0.23 |
VAS | 3.7 ± 1.2 | 3.3 ± 0.5 | 0.48 | 10.00 | 2.3 ± 1.2 | 0.23 | 0.80 |
WOMAC | 36.5 ± 15.5 | 17.8 ± 11.2 | 0.03 | 0.26 | 9.0 ± 5.2 | 0.03 | 0.09 |
5TSST | |||||||
Total time (s) | 22.2 ± 9.2 | 14.1 ± 7.1 | 0.03 | 0.06 | 10.7 ± 6.2 | 0.03 | 0.04 |
Maximal angular velocity (°/s) | 100.5 ± 35.4 | 168.3 ± 71.4 | 0.03 | 0.08 | 180.3 ± 82.1 | 0.03 | 0.05 |
Average angular velocity (°/s) | 45.5 ± 14.4 | 75.8 ± 29.0 | 0.03 | 0.04 | 89.7 ± 40.7 | 0.03 | 0.03 |
HE group (n = 6) | |||||||
Maximal knee extension (°) | 24 ± 13.7 | 18.2 ± 6.9 | 0.23 | 0.17 | 16.7 ± 5.2 | 0.12 | 0.04 |
Maximal knee flexion (°) | 93.5 ± 8.8 | 101.7 ± 6.1 | 0.04 | 0.42 | 104.8 ± 3.7 | 0.05 | 0.23 |
VAS | 5.2 ± 1.7 | 3.3 ± 0.5 | 0.06 | 10.00 | 2.2 ± 1.0 | 0.03 | 0.80 |
WOMAC | 41.7 ± 15.7 | 25.7 ± 12.4 | 0.03 | 0.26 | 16.8 ± 9.2 | 0.03 | 0.09 |
5TSST | |||||||
Total time (s) | 27.1 ± 11.7 | 20.9 ± 10.1 | 0.03 | 0.06 | 18.2 ± 8.3 | 0.03 | 0.04 |
Maximal angular velocity (°/s) | 94.5 ± 35.6 | 106.5 ± 41.1 | 0.05 | 0.08 | 108.0 ± 37.6 | 0.03 | 0.05 |
Average angular velocity (°/s) | 31.5 ± 12.4 | 38.7 ± 11.7 | 0.03 | 0.04 | 41.2 ± 11.3 | 0.03 | 0.03 |
Dependent Variables | B(SE) | |||||||
---|---|---|---|---|---|---|---|---|
(Reference: Baseline) | (Reference: HE Group) | |||||||
1-Month Follow-Up | p-Value | 2-Month Follow-Up | p-Value | Group at 1-Month | p-Value | Group at 2-Months | p-Value | |
Maximal knee extension (°) | −6.6 (3.4) | 0.0497 | −8.1 (4.0) | 0.043 | −8.5 (4.5) | 0.057 | −10.7 (5.4) | 0.049 |
Maximal knee flexion (°) | 8.2 (1.9) | 0.000 | 11.3 (3.1) | 0.497 | 4.5 (5.3) | 0.397 | 3.2 (4.7) | 0.499 |
VAS | −1.8 (0.6) | 0.002 | −3.0 (0.5) | 0.000 | 1.5 (0.7) | 0.450 | 1.7 (1.0) | 0.083 |
WOMAC | −16.0 (1.6) | 0.000 | −24.8 (2.9) | 0.000 | −2.7 (4.0) | 0.510 | −2.7 (5.3) | 0.617 |
5TSST | ||||||||
Total time (s) | −6.2 (1.5) | 0.000 | −8.9 (1.9) | 0.000 | −1.9 (2.3) | 0.413 | −2.6 (2.4) | 0.279 |
Maximal angular velocity (°/s) | 12.0 (4.0) | 0.003 | 13.5 (3.9) | 0.000 | 55.8 (17.5) | 0.001 | 66.3 (21.1) | 0.002 |
Average angular velocity (°/s) | 7.2 (1.6) | 0.000 | 9.7 (2.0) | 0.000 | 23.2 (8.3) | 0.005 | 34.5 (12.5) | 0.006 |
Exercise Completion Rate | MAR Group | HE Group | p-Value a | |
---|---|---|---|---|
Recorded by Motion Sensor Device | Reported by Participants | Reported by Participants | ||
1 month follow-up (%) | 77.7 ± 8.4 | 80.0 ± 8.6 | 41.7 ± 8.7 | 0.041 |
2 month follow-up (%) | 83.4 ± 8.9 | 85.0 ± 7.6 | 48.3 ± 7.0 | 0.026 |
Overall (%) | 80.6 ± 8.2 | 82.5 ± 7.7 | 45.0 ± 7.2 | 0.041 |
Positive Feedback | Suggestions |
---|---|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-P.; Lin, C.-Y.; Kuo, Y.-J.; Lee, O.K.-S. Feasibility and Effect of a Wearable Motion Sensor Device in Facilitating In-Home Rehabilitation Program in Patients after Total Knee Arthroplasty: A Preliminary Study. Appl. Sci. 2022, 12, 2433. https://doi.org/10.3390/app12052433
Chen Y-P, Lin C-Y, Kuo Y-J, Lee OK-S. Feasibility and Effect of a Wearable Motion Sensor Device in Facilitating In-Home Rehabilitation Program in Patients after Total Knee Arthroplasty: A Preliminary Study. Applied Sciences. 2022; 12(5):2433. https://doi.org/10.3390/app12052433
Chicago/Turabian StyleChen, Yu-Pin, Chung-Ying Lin, Yi-Jie Kuo, and Oscar Kuang-Sheng Lee. 2022. "Feasibility and Effect of a Wearable Motion Sensor Device in Facilitating In-Home Rehabilitation Program in Patients after Total Knee Arthroplasty: A Preliminary Study" Applied Sciences 12, no. 5: 2433. https://doi.org/10.3390/app12052433
APA StyleChen, Y. -P., Lin, C. -Y., Kuo, Y. -J., & Lee, O. K. -S. (2022). Feasibility and Effect of a Wearable Motion Sensor Device in Facilitating In-Home Rehabilitation Program in Patients after Total Knee Arthroplasty: A Preliminary Study. Applied Sciences, 12(5), 2433. https://doi.org/10.3390/app12052433