Design of an Origami Crawling Robot with Reconfigurable Sliding Feet
Abstract
:1. Introduction
2. Description of the Origami Twisted Tower
2.1. Assembly of the Twisted Tower
2.2. Kinematics of the Twisted Tower
2.2.1. Axial Extension/Contraction Motions
2.2.2. Bending Motion
3. Mechanical Properties of the Origami Twisted Tower
4. Design of the Origami Crawling Robot
4.1. Rope-Motor-Driven Mechanism of the Origami Robot
4.2. System Design of the Origami Crawling Robot
4.3. Experiments on Crawling Motions with Rubber Sliding Feet
4.4. Experiments on Crawling Motions with Electromagnetic Sliding Feet
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, R.J. The science of origami. Phys. World 2007, 20, 30. [Google Scholar] [CrossRef]
- Dureisseix, D. An overview of mechanisms and patterns with origami. Int. J. Space Struct. 2012, 27, 1–14. [Google Scholar] [CrossRef]
- Cipra, B.A. In the fold: Origami meets mathematics. SIAM News 2001, 34, 1–4. [Google Scholar]
- Zhou, X.; Wang, H.; You, Z. Design of three-dimensional origami structures based on a vertex approach. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150407. [Google Scholar] [CrossRef] [Green Version]
- Zirbel, S.A.; Lang, R.J.; Thomson, M.W.; Sigel, D.A.; Walkemeyer, P.E.; Trease, B.P.; Magleby, S.P.; Howell, L.L. Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 2013, 135, 111005. [Google Scholar] [CrossRef]
- Pohl, D.; Wolpert, W. Engineered spacecraft deployables influenced by nature. In Proceedings of the Advances in Optomechanics, San Diego, CA, USA, 5–6 August 2009; p. 742408. [Google Scholar]
- Peraza-Hernandez, E.A.; Hartl, D.J.; Malak, R.J., Jr.; Lagoudas, D.C. Origami-inspired active structures: A synthesis and review. Smart Mater. Struct. 2014, 23, 094001. [Google Scholar] [CrossRef]
- Miyashita, S.; Guitron, S.; Li, S.; Rus, D. Robotic metamorphosis by origami exoskeletons. Sci. Robot. 2017, 2, eaao4396. [Google Scholar] [CrossRef] [Green Version]
- Rus, D.; Tolley, M.T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 2018, 3, 101–112. [Google Scholar] [CrossRef]
- Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. A method for building self-folding machines. Science 2014, 345, 644–646. [Google Scholar] [CrossRef]
- Belke, C.H.; Paik, J. Mori: A modular origami robot. IEEE/ASME Trans. Mechatron. 2017, 22, 2153–2164. [Google Scholar] [CrossRef]
- Onal, C.D.; Tolley, M.T.; Wood, R.J.; Rus, D. Origami-inspired printed robots. IEEE/ASME Trans. Mechatron. 2014, 20, 2214–2221. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Kang, B.B.; Lee, D.-Y.; Baek, S.-M.; Kim, W.-B.; Choi, W.-Y.; Song, J.-R.; Joo, H.-J.; Park, D.; Cho, K.-J. Development of a multi-functional soft robot (SNUMAX) and performance in RoboSoft Grand Challenge. Front. Robot. AI 2016, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Lee, D.-Y.; Jung, G.-P.; Cho, K.-J. An origami-inspired, self-locking robotic arm that can be folded flat. Sci. Robot. 2018, 3, eaar2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Wang, Y.; Zheng, C. Twister hand: Underactuated robotic gripper inspired by origami twisted tower. IEEE Trans. Robot. 2020, 36, 488–500. [Google Scholar] [CrossRef]
- Li, S.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. USA 2017, 114, 13132–13137. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, F.; Piccin, O.; Barbe, L.; Bayle, B. An origami-inspired flexible pneumatic actuator. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 436–441. [Google Scholar]
- Sun, X.; Felton, S.M.; Niiyama, R.; Wood, R.J.; Kim, S. Self-folding and self-actuating robots: A pneumatic approach. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 3160–3165. [Google Scholar]
- Robertson, M.A.; Kara, O.C.; Paik, J. Soft pneumatic actuator-driven origami-inspired modular robotic “pneumagami”. Int. J. Robot. Res. 2020, 40, 72–85. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, Y.; Cha, Y. Origami pump actuator based pneumatic quadruped robot (OPARO). IEEE Access 2021, 9, 41010–41018. [Google Scholar] [CrossRef]
- Yu, M.; Yang, W.; Yu, Y.; Cheng, X.; Jiao, Z. A crawling soft robot driven by pneumatic foldable actuators based on Miura-Ori. Actuators 2020, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.J.; Rendon, J.; Malak, R.J.; Hartl, D. An origami-inspired, SMA actuated lifting structure. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; p. V05BT07A024. [Google Scholar]
- Onal, C.D.; Wood, R.J.; Rus, D. An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 2012, 18, 430–438. [Google Scholar] [CrossRef]
- Tolley, M.T.; Felton, S.M.; Miyashita, S.; Aukes, D.; Rus, D.; Wood, R.J. Self-folding origami: Shape memory composites activated by uniform heating. Smart Mater. Struct. 2014, 23, 094006. [Google Scholar] [CrossRef]
- Kwan, K.; Li, S.; Hau, N.; Li, W.-D.; Feng, S.; Ngan, A.H. Light-stimulated actuators based on nickel hydroxide-oxyhydroxide. Sci. Robot. 2018, 3, eaat4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Zhang, Y.; Wang, K.W. Origami-based earthworm-like locomotion robots. Bioinspir. Biomim. 2017, 12, 065003. [Google Scholar] [CrossRef]
- Koh, J.-S.; Cho, K.-J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE/ASME Trans. Mechatron. 2012, 18, 419–429. [Google Scholar] [CrossRef]
- Khan, M.B.; Chuthong, T.; Do, C.D.; Thor, M.; Billeschou, P.; Larsen, J.C.; Manoonpong, P. iCrawl: An inchworm-inspired crawling robot. IEEE Access 2020, 8, 200655–200668. [Google Scholar] [CrossRef]
- Ning, J.; Ti, C.; Liu, Y. Inchworm inspired pneumatic soft robot based on friction hysteresis. J. Robot. Autom. 2017, 1, 54–63. [Google Scholar]
- Pagano, A.; Yan, T.; Chien, B.; Wissa, A.; Tawfick, S. A crawling robot driven by multi-stable origami. Smart Mater. Struct. 2017, 26, 094007. [Google Scholar] [CrossRef]
- Vander Hoff, E.; Jeong, D.; Lee, K. OrigamiBot-I: A thread-actuated origami robot for manipulation and locomotion. In Proceedings of the 2014 IEEE/Rsj International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 1421–1426. [Google Scholar]
- Jeong, D.; Lee, K. Design and analysis of an origami-based three-linger manipulator. Robotica 2018, 36, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lee, K. 3D-printed semi-soft mechanisms inspired by origami twisted tower. In Proceedings of the 2017 NASA/ESA Conference on Adaptive Hardware and Systems, Pasadena, CA, USA, 24–27 July 2017; pp. 161–166. [Google Scholar]
- Kapucu, S. A simple experiment to measure the maximum coefficient of static friction with a smartphone. Phys. Educ. 2018, 53, 053006. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Lee, K. Three-dimensional printable origami twisted tower: Design, fabrication, and robot embodiment. IEEE Robot. Autom. Lett. 2018, 3, 116–123. [Google Scholar] [CrossRef]
Type of DC Motor | DS04-NFC |
---|---|
Voltage | 4.8 V–6 V |
Torque | 5.5 kg/cm |
Speed | 60°/0.22 s |
Weight | 38 g |
Size | 40.8 mm × 20 mm × 39.5 mm |
Type of Electromagnet | KB-20/15 |
---|---|
Maximum adhesion force | 2.5 kg |
Size | Φ20 mm × 15 mm |
Working voltage | 24 V |
Working current | 0.1 A |
Weight | 25 g |
Surface | Sliding Object | Coefficient of Friction | |
---|---|---|---|
Forward Friction | Backward Friction | ||
Wooden desk | Rubber-type front foot | 0.392 | 0.456 |
Wooden desk | Rubber-type back foot | 0.248 | 0.313 |
Iron platform | Electromagnetic-type foot | 0.496 | 0.532 |
Wooden desk | Rubber block | 0.577 | |
Wooden desk | Resin block | 0.216 | |
Iron platform | Resin block | 0.424 |
Working Cycle | Foot Type | Force Analysis (fe, fr, fd) | Contact Angle (θa, θb) | Moving Status of Foot (Yes, No) | Motor Rotating Mode (Forward, Backward, Off) |
---|---|---|---|---|---|
Step 1 | Front foot | fd = 0, fe = 0, fr = 0 | θa = 0 | No | Off |
Back foot | fd = 0, fe = 0, fr = 0 | θb = 0 | No | ||
Step 2 | Front foot | fd = fe + fr | θa = 0 | No | Forward |
Back foot | fd > fe + fr | θb > 0 | Yes | ||
Step 3 | Front foot | fe > fr, fd =0 | θa > 0 | Yes | Backward |
Back foot | fe = fr, fd =0 | θb = 0 | No | ||
Step 4 | Front foot | fd = 0, fe = 0, fr = 0 | θa = 0 | No | Off |
Back foot | fd = 0, fe = 0, fr = 0 | θb = 0 | No |
Working Cycle | Foot Type | Force Analysis (fe, fr, fd) | Electromagnet Status (On, Off) | Moving Status of Foot (Yes, No) | Motor Rotating Mode (Forward, Backward, Off) |
---|---|---|---|---|---|
Step 1 | Front foot | fd = 0, fe = 0, fr = 0 | Off | No | Off |
Back foot | fd = 0, fe = 0, fr = 0 | Off | No | ||
Step 2 | Front foot | fd = fe + fr | On | No | Forward |
Back foot | fd > fe + fr | Off | Yes | ||
Step 3 | Front foot | fe > fr, fd = 0 | Off | Yes | Backward |
Back foot | fe = fr, fd = 0 | On | No | ||
Step 4 | Front foot | fd = 0, fe = 0, fr = 0 | Off | No | Off |
Back foot | fd = 0, fe = 0, fr = 0 | Off | No |
Publications | Type of Crawling Robot | Driving Methods | Motion Capability |
---|---|---|---|
Pagano et al. [30]. | Paper-based Kresling pattern | DC motors | 2.1–1.8 mm/s at forward |
Vander Hoff et al. [31]. | Paper-based twisted tower pattern | DC motors | 6.3 mm/s at forward |
Onal et al. [23]. | Polymer-based water bomb pattern | SMA coil actuator | 0.45 mm/s at forward |
Fang et al. [26]. | PETE- and PEEK-film-based water bomb pattern | DC motors, SMA actuator, and Balloon pneumatic | 3.6–12.3 mm/s at forward |
Yu et al. [21]. | Silicone-based Miura-ori pattern | Pneumatic | 5 mm/s at forward 15°/s at turning |
Proposed prototype | Paper-based twisted tower pattern | DC motors and electromagnet | 5.2 mm/s at forward 6.5 mm/s at backward 1°/s at turning |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, F.; Leng, Y.; Xian, S.; Dong, W.; Yin, K.; Zhang, G. Design of an Origami Crawling Robot with Reconfigurable Sliding Feet. Appl. Sci. 2022, 12, 2520. https://doi.org/10.3390/app12052520
Fei F, Leng Y, Xian S, Dong W, Yin K, Zhang G. Design of an Origami Crawling Robot with Reconfigurable Sliding Feet. Applied Sciences. 2022; 12(5):2520. https://doi.org/10.3390/app12052520
Chicago/Turabian StyleFei, Fei, Ying Leng, Sifan Xian, Wende Dong, Kuiying Yin, and Guanglie Zhang. 2022. "Design of an Origami Crawling Robot with Reconfigurable Sliding Feet" Applied Sciences 12, no. 5: 2520. https://doi.org/10.3390/app12052520
APA StyleFei, F., Leng, Y., Xian, S., Dong, W., Yin, K., & Zhang, G. (2022). Design of an Origami Crawling Robot with Reconfigurable Sliding Feet. Applied Sciences, 12(5), 2520. https://doi.org/10.3390/app12052520