Geology and Petrogeochemistry of Lijiapuzi Nb-Ta Granitic Pegmatite Deposit: Implications for Ore Genesis and Prospecting
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit Geology
4. Samples and Methods
5. Results
5.1. The Major Elements
5.2. The Rare Earth Elements
5.3. The Trace Elements
6. Discussion
6.1. Petrogenesis of Pegmatites
6.2. Tectonic Setting
6.3. Nb-Ta Mineralization in Lijiapuzi Pegmatite Deposit
6.4. Implications for Nb-Ta Mineral Resource Potential in Lijiapuzi District
7. Conclusions
- (1)
- The Nb-Ta bearing pegmatites in Lijiapuzi are mainly composed of coarse-grained microcline, albite, muscovite, lepidolite, quartz, spodumene, and apatite, with minor beryl, gahnite, cassiterite and zircon and fine-grained tantalite, columbite, microlite, goethite and uranium minerals. The rare metal bearing pegmatites belong to the LCT-type deposit. The Nb-Ta mineralization mainly occurred in the process of albitization in the intermediate zone, and was superimposed by a late-stage uranium mineralization.
- (2)
- The lithogeochemical features indicate that Lijiapuzi pegmatoids are rich in silicon and alkaline, poor in calcium, magnesium, titanium, and phosphorus, and belong to peraluminous granitoid rocks. The enrichment of LILEs and the depletion of HFSEs, the distinct right-inclined REE pattern with obvious Eu negative anomaly, lower ratio of Nb/Ta and higher ratio of La/Nb and Rb/Sr indicate that the pegmatites were of a crustal origin and formed in relatively extensional tectonic setting of post-orogenesis.
- (3)
- There are two kinds of pegmatites in the Lijiapuzi district, i.e., the NW-trending pegmatites, which are shorter, thicker, obvious-zoning and localized in the upper part of the near-surface, and the NE-trending pegmatites are longer, thinner, devoid of zoning and are localized in the lower part of the district. This probably means that there is excellent ore prospecting potential in the lower part of the Lijiapuzi district.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Mackay, D.A.R.; Simandl, G.J. Geology, market and supply chain of niobium and tantalum—A review. Miner. Depos. 2014, 49, 1025–1047. [Google Scholar] [CrossRef]
- Linnen, R.; Trueman, D.; Burt, R. Tantalum and niobium. In Critical Metal Handbook; Gunn, G., Ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2014; pp. 361–384. [Google Scholar]
- Krishnamurthy, P. Rare metal and rare earth element resources: World scenario with special reference to India. J. Geol. Soc. India 2020, 95, 465–474. [Google Scholar] [CrossRef]
- Simandl, G.J.; Burt, R.O.; Trueman, D.L.; Paradis, S. Economic geology models 4. Tantalum and niobium: Deposits, resources, exploration methods and market—A primer for geoscientists. Geosci. Can. 2018, 45, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Simmons, W.B.; Webber, K.L. Pegmatite genesis: State of the art. Eur. J. Mineral. 2008, 20, 421–438. [Google Scholar] [CrossRef]
- Černy, P. Rare-element granitic pegmatite. Part II: Regional to global environments and pretrogenesis. Geosci. Can. 1991, 18, 68–81. [Google Scholar]
- Landes, K.K. Origin and classification of pegmatites. Am. Miner. 1933, 18, 33–56. [Google Scholar]
- London, D. Pegmatites; The Canadian Mineralogist, Special Publication 10; Mineralogical Association of Canada: Quebec City, QC, Canada, 2008; pp. 1–308. [Google Scholar]
- Dill, H.G. The CMS classification scheme (Chemical composition—Mineral assemblage—Structural geology)—linking geology to mineralogy of pegmatitic and aplitic rocks. J. Min. Geochem. 2016, 193, 231–263. [Google Scholar] [CrossRef]
- Müller, A.; Simmons, W.; Beurlen, H.; Thomas, R.; Ihlen, P.M.; Wise, M.; Roda-Robles, E.; Neiva, A.M.R.; Zagorsky, V. A proposed new mineralogical classification system for granitic pegmatites-Part I: History and the need for a new classification. Can. Mineral. 2018, 56, 1–25. [Google Scholar]
- Černy, P. Rare-element granitic pegmatite. Part I: Anatomy and internal evolution of pegmatite deposits. Geosci. Can. 1991, 18, 49–67. [Google Scholar]
- Černy, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef] [Green Version]
- Li, J.K.; Li, P.; Wang, D.H. A review of niobium and tantalum metallogenic regularity in China. Chin. Sci. Bull. 2019, 64, 1545–1566. [Google Scholar] [CrossRef]
- Wang, R.C.; Che, X.D.; Wu, B. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chin. Sci. Bull. 2020, 65, 3763–3777. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.S. Current situation of rare metal resources in China. Geol. Prosp. 2004, 40, 26–30. [Google Scholar]
- Zhu, J.C.; Wu, C.N.; Liu, C.S.; Li, F.C.; Huang, X.L.; Zhou, D.S. Magmatic-hydrothermal evolution and genesis of Koktokay No.3 rare metal pegmatite dyke, Altai, China. Geol. J. China Univ. 2000, 6, 40–51. [Google Scholar]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M.; Ding, J.G.; Guo, Z.L. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai. Acta Petrol. Sin. 2013, 29, 3004–3022. [Google Scholar]
- Liu, X.; Zhou, F.C.; Huang, Z.B.; Li, J.K.; Zhou, H.X.; Xiao, G.Q.; Bao, Y.H.; Li, P.; Tan, L.M.; Shi, W.K.; et al. Discovery of Renli Superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang, Hunan Province and its significances. Geotecton. Metallog. 2018, 42, 235–243. [Google Scholar]
- Gao, Y.; Sun, Y.; Zhao, Z.; Li, J.K.; He, H.H.; Yang, Y.Q. 40Ar-39Ar dating of muscovite from the Zhaojinggou Nb-Ta polymetallic deposit in Wuchuan county of Inner Mongolia and its geological implications. Rock Mineral. Anal. 2017, 36, 551–558. [Google Scholar]
- Li, Z.D.; Li, X.G.; Cui, Y.R.; Li, G.Z.; Zhang, J.; Guo, H.; Liu, W.G.; Zhang, C.; Yu, R.G.; Xie, Y.; et al. Yanshanian mineralization of Zhaojinggou Nb-Ta deposit, Inner Mongolia: Evidences from the monazite and zircon LA-MC-ICP-MS U-Pb and biotite 40Ar- 39Ar geochronology. Earth Sci. 2019, 4, 234–247. [Google Scholar]
- Zhao, G.C.; Cawood, P.A.; Wilde, S.A.; Sun, M.; Lu, L.Z. Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precam. Res. 2000, 103, 55–88. [Google Scholar] [CrossRef]
- Pirajno, F. The Geology and Tectonic Settings of China’s Mineral Deposits; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–118. [Google Scholar]
- Li, S.R.; Santosh, M. Metallogeny and craton destruction: Record from the North China Craton. Ore Geol. Rev. 2014, 56, 376–414. [Google Scholar] [CrossRef]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic gold deposits. Sci. China Earth Sci. 2015, 58, 1253–1537. [Google Scholar] [CrossRef]
- Diao, C.C.; Feng, J.L.; Yu, J.H.; Zhu, X.Z. Geological characteristics of the Lijiapuzi niobium-tantalum deposit in Xinbin County, Liaoning Province. Geol. Res. 2013, 22, 20–24. [Google Scholar]
- Pang, Y.M. Metallogenic Regularity of Lijiapuzi Nb-Ta Deposit, Xinbin, Liaoning Province. Master’s Thesis, Northeastern University, Shenyang, China, June 2021. [Google Scholar]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: Dordrecht, The Netherlands, 2009; pp. 1213–1241. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Miller, C.F. Are strongly petaluminous magmas derived from politic sedimentary sources? J. Geol. 1985, 93, 673–689. [Google Scholar] [CrossRef]
- Defant, M.J.; Xu, J.F.; Kepezhinskas, P. Adakites: Some variations on a theme. Acta Petrol. Sin. 2002, 18, 129–142. [Google Scholar]
- Taylor, S.R.; Mclennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Mcdonough, W.F. Compositional model for the earth’s core. In Treatise on Geochemistry; Davis, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 547–568. [Google Scholar]
- Horng, W.S.; Hess, P.C.; Gan, H. The interactions between M+5 cations (Nb+5, Ta+5, or P+5) and anhydrous haplogranite melts. Geochim. Cosmochim. Acta 1999, 63, 2419–2428. [Google Scholar] [CrossRef]
- Xiong, X.L.; Adam, J.; Green, T.H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 2005, 218, 339–359. [Google Scholar] [CrossRef]
- Linnen, R.L.; Keppler, H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib. Mineral. Petrol. 1997, 128, 213–227. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.G.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Pet. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Trans. Royal Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Hou, J.L. The Comparative Study of Diagenetic, Metallogenic Characteristics and Tectonic Environment of Two Kinds of Pegmatites in China. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, May 2018. [Google Scholar]
- Chen, R.D. A paleo-Proterozoic rift basin: Liaodong rift. Liaoning Geol. 1984, 2, 126–133. [Google Scholar]
- Chen, R.D. Geological tectonic evolution of Liaodong rift. Reg. Geol. China 1990, 4, 306–315. [Google Scholar]
- Chen, R.D.; Li, X.D.; Zhang, F.S. Several problems about the paleo-Proterozoic geology of eastern Liaodong. Geol. China 2003, 30, 207–213. [Google Scholar]
- Wan, Y.S.; Song, B.; Yang, C.; Liu, D.Y. Zircon SHRIMP U-Pb geochronogy of Archean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. ACTA Geol. Sin. 2005, 79, 78–86. [Google Scholar]
- Dong, C.Y.; Ma, M.Z.; Liu, S.J.; Xie, H.Q.; Liu, D.Y.; Li, X.M.; Wan, Y.S. Middle Paleoproterozoic crustal extensional regime in the North China Craton: New evidence from SHRIMP zircon U-Pb dating and whole-rock geochemistry of metagabbro in the Anshan- Gongchangling area. Acta Petrol. Sin. 2012, 28, 2785–2792. [Google Scholar]
- Bi, J.H.; Xing, D.H.; Ge, W.C.; Yang, H.; Dong, Y. Age and tectonic setting of meta-acid volcanic rocks from the North Liaohe Group in the Liaodong area: Paleoproterozoic intracontinental rift or active continental margin? Earth Sci. Front. 2018, 25, 295–308. [Google Scholar]
- Cuney, M.; Marignac, C.; Weisbrod, A. The Besuvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magrnatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol. 1992, 87, 1766–1794. [Google Scholar] [CrossRef]
- Raimbault, L.; Cuney, M.; Azeacott, C.; Duthou, J.L.; Joron, J.L. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ. Geol. 1995, 90, 548–576. [Google Scholar] [CrossRef]
- Zhu, J.C.; Li, R.K.; Li, F.C.; Xiong, X.L.; Zhou, F.Y.; Huang, X.L. Topaz-albite granites and rare-metal mineralization in the Limu district, Guangxi Province, southeast China. Miner. Depos. 2001, 36, 393–405. [Google Scholar] [CrossRef]
- Kempe, U.; Gotze, J.; Dandar, S.; Habermlann, D. Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregtz and Tsakhir (Mongolian Altai): Indications from a combined CL-SEM study. Mineral. Mag. 1999, 63, 165–177. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Alteration, HFSE mineralization and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 2006, 91, 19–34. [Google Scholar] [CrossRef]
- Wang, F.L.; Zhao, T.P.; Chen, W. Advances in study of Nb-Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits. Miner. Depos. 2012, 31, 293–308. [Google Scholar]
- Huang, X.E.; Xu, Z.H. Metasomatism and its relationship to rare metal mineralization of Yashan granite, Jiangshan. Jiangxi Nonferrous Met. 2005, 8, 1–4. [Google Scholar]
- Wang, Y.R.; Li, J.T.; Lu, J.L.; Fan, W.L. Geochemical mechanism of Nb-Ta mineralization during the late stage of granite crystallization. Geochem 1982, 1, 175–185. [Google Scholar]
- Qiu, R.Z.; Zhou, S.; Chang, H.L.; Du, S.H.; Peng, S.B. Role of the supercritical fluid in the process of granitic rock-forming and mineralization: Taking the granitic Nb-Ta deposit in Xianghualing area as an example. Geol. Sci. Technol. Info. 1998, 17, 40–44. [Google Scholar]
- Qiu, R.Z.; Peng, S.B.; Du, S.H. Genesis of granitic Nb-Ta deposit in Xianghualing area and the role of the supercritical fluid in the process of rock-forming and mineralization. Hunan Geol. 1997, 16, 92–97. [Google Scholar]
- Beskin, S.M.; Marin, Y.B. Classification of granitic pegmatites and pegmatite-bearing granitic systems. Geol. Ore Depos. 2018, 60, 578–586. [Google Scholar] [CrossRef]
- Beskin, S.M.; Marin, Y.B. Granite systems with rare-metal pegmatites. Geol. Ore Depos. 2020, 62, 554–563. [Google Scholar] [CrossRef]
Ore Body | Ore Body Size | Grade (%) | Occurrence | |||
---|---|---|---|---|---|---|
Length (m) | Average Thickness (m) | Nb2O5 | Ta2O5 | Dip Direction | Dip Angle | |
① | 238 | 0.83 | 0.0038 | 0.0339 | 305° | 75° |
② | 156 | 0.99 | 0.0040 | 0.0319 | 315° | 75° |
②-1 | 163 | 1.99 | 0.0074 | 0.0330 | 315° | 65° |
③ | 90 | 0.12 | 0.0028 | 0.0320 | 325° | 85° |
④ | 648 | 1.21 | 0.0051 | 0.0298 | 145° | 75° |
⑤ | 42 | 3.39 | 0.0022 | 0.0510 | 55° | 40° |
⑥ | 26 | 1.87 | 0.0035 | 0.0475 | 40° | 50° |
⑦ | 112 | 0.37 | 0.0020 | 0.0158 | 40° | 65° |
⑧ | 100 | 0.28 | 0.0020 | 0.0592 | 295° | 40° |
⑨ | 31 | 0.99 | 0.0036 | 0.0549 | 25° | 75° |
⑩ | 35 | 0.27 | 0.0020 | 0.0254 | 70° | 55° |
⑪ | 102 | 0.50 | 0.0033 | 0.0351 | 302° | 65° |
Sample | LJP-1 | LJP-2 | LJP-3 | LJP-4 | LJP-5 | LJP-6 | LJP-7 | LJP-8 | LJP-9 | LJP-10 | LJP-11 | LJP-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wall Zone | Core | Intermediate Zone | ||||||||||
Major elements (wt%) | ||||||||||||
SiO2 | 68.77 | 71.84 | 65.73 | 76.60 | 75.14 | 77.45 | 88.75 | 75.82 | 81.03 | 81.56 | 71.33 | 72.95 |
Al2O3 | 16.70 | 14.66 | 18.30 | 14.04 | 14.88 | 13.70 | 6.73 | 14.64 | 11.36 | 10.88 | 17.44 | 16.44 |
TFe2O3 | 0.41 | 0.40 | 0.37 | 0.53 | 1.13 | 0.65 | 0.51 | 0.85 | 1.12 | 0.83 | 1.18 | 0.53 |
Na2O | 2.73 | 2.19 | 3.37 | 6.88 | 4.77 | 6.16 | 3.72 | 5.96 | 3.20 | 4.05 | 6.80 | 9.04 |
K2O | 9.97 | 9.25 | 10.30 | 1.21 | 1.93 | 0.89 | 0.25 | 1.26 | 1.67 | 1.12 | 1.95 | 0.16 |
CaO | 0.16 | 0.11 | 0.22 | 0.18 | 0.17 | 0.25 | 0.14 | 0.20 | 0.10 | 0.23 | 0.22 | 0.63 |
MgO | 0.01 | 0.03 | 0.02 | 0.03 | 0.13 | 0.07 | 0.02 | 0.06 | 0.07 | 0.08 | 0.06 | 0.02 |
MnO | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.03 |
Cr2O3 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 |
P2O5 | 0.14 | 0.14 | 0.19 | 0.11 | 0.05 | 0.05 | 0.07 | 0.05 | 0.04 | 0.03 | 0.12 | 0.07 |
BaO | 0.04 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
SrO | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
V2O5 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 |
LOI | 0.29 | 0.38 | 0.40 | 0.32 | 1.18 | 0.49 | 0.11 | 0.65 | 0.88 | 0.68 | 0.98 | 0.14 |
Total | 99.27 | 99.08 | 99.00 | 99.97 | 99.45 | 99.76 | 100.36 | 99.56 | 99.56 | 99.52 | 100.16 | 100.06 |
Trace elements (ppm) | ||||||||||||
Cs | 130 | 184.5 | 130.5 | 21.5 | 68.5 | 31.8 | 5.45 | 47.6 | 96.1 | 32.6 | 23 | 5.64 |
Rb | 8370 | 8940 | 9410 | 1155 | 3420 | 1520 | 198.5 | 2360 | 3510 | 1710 | 1660 | 125 |
Ba | 252 | 125.5 | 199.5 | 34.8 | 22.8 | 10.2 | 15.5 | 11.9 | 7.7 | 13.6 | 57.9 | 15 |
Th | 0.23 | 0.61 | 0.23 | 0.08 | 0.4 | 0.4 | 3.46 | 0.16 | 2.94 | 1.18 | 0.12 | 0.26 |
U | 0.66 | 0.68 | 0.37 | 0.05 | 0.53 | 0.84 | 4.19 | 0.25 | 0.6 | 3.88 | 0.09 | 1.45 |
K | 9.97 | 9.25 | 10.3 | 1.21 | 1.93 | 0.89 | 0.25 | 1.26 | 1.67 | 1.12 | 1.95 | 0.16 |
Nb | 1.5 | 1.5 | 2 | 2.6 | 27.2 | 16.7 | 20.5 | 17.2 | 19.5 | 60.0 | 3.9 | 9.8 |
Ta | 25.2 | 46.4 | 41.8 | 15.4 | 112 | 116 | 606 | 84.9 | 122 | 282 | 14.6 | 74.2 |
La | 1.4 | 0.9 | 1.1 | 0.6 | 0.7 | 1.2 | 3 | 1.2 | 0.9 | 0.7 | 1.8 | 0.8 |
Ce | 1.9 | 2 | 1.7 | 1 | 3.4 | 2.1 | 6.3 | 2.3 | 1.4 | 2.4 | 4.1 | 1.9 |
Pb | 7.4 | 9.1 | 5.1 | 1.1 | 2.4 | 2.5 | 4.3 | 1.7 | 1.8 | 3.4 | 1.4 | 2.4 |
Pr | 0.2 | 0.13 | 0.18 | 0.07 | 0.17 | 0.27 | 0.61 | 0.31 | 0.15 | 0.19 | 0.43 | 0.15 |
Sr | 28.9 | 19.6 | 24 | 12.6 | 6.4 | 11 | 12.5 | 13.1 | 6.1 | 11.7 | 13.9 | 39.3 |
Nd | 0.7 | 0.44 | 0.7 | 0.2 | 0.6 | 1 | 2.2 | 1.1 | 0.6 | 0.8 | 1.7 | 0.5 |
Zr | 4.0 | 3.0 | 3.0 | 2.0 | 2.0 | 2.0 | 5.0 | 2.0 | 2.0 | 8.0 | 2.0 | 2.0 |
Hf | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.7 | 0.2 | 0.3 | 1.0 | 0.2 | 0.2 |
Sm | 0.2 | 0.14 | 0.21 | 0.08 | 0.16 | 0.21 | 0.49 | 0.25 | 0.19 | 0.27 | 0.47 | 0.16 |
Eu | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | 0.04 | 0.03 | 0.03 | 0.05 | 0.03 |
Gd | 0.21 | 0.11 | 0.21 | 0.12 | 0.15 | 0.19 | 0.43 | 0.24 | 0.18 | 0.43 | 0.46 | 0.17 |
Tb | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.06 | 0.03 | 0.03 | 0.06 | 0.06 | 0.02 |
Dy | 0.09 | 0.1 | 0.15 | 0.09 | 0.11 | 0.15 | 0.28 | 0.16 | 0.17 | 0.36 | 0.27 | 0.1 |
Ti | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
Y | 0.7 | 0.5 | 0.7 | 0.4 | 0.5 | 0.8 | 1.9 | 1.0 | 0.9 | 3.0 | 1.6 | 0.8 |
Ho | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.05 | 0.03 | 0.03 | 0.08 | 0.04 | 0.02 |
Er | 0.06 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.14 | 0.07 | 0.07 | 0.21 | 0.09 | 0.06 |
Tm | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 |
Yb | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.12 | 0.06 | 0.06 | 0.2 | 0.06 | 0.07 |
Lu | 2.0 | 1.7 | 2.4 | 5.7 | 55.4 | 25.2 | 3.7 | 38.2 | 32.1 | 32.3 | 13.0 | 4.8 |
Sc | 0.1 | 0.1 | 0.1 | 0.1 | 0.7 | 0.3 | 0.1 | 0.4 | 0.3 | 0.8 | 0.2 | 0.2 |
Be | 3.04 | 3.24 | 4.98 | 8.47 | 6.55 | 7.32 | 16.70 | 8.13 | 6.96 | 6.95 | 7.47 | 42.0 |
Sn | 0.8 | 0.3 | 0.7 | 27.4 | 1.1 | 12.5 | 1.0 | 16.9 | 14.9 | 21.4 | 3.2 | 1.2 |
Eu/Eu * | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.57 | 0.46 | 0.34 | 0.34 | 0.57 | 0.34 |
Nb/Ta | 0.06 | 0.03 | 0.05 | 0.17 | 0.24 | 0.14 | 0.03 | 0.20 | 0.16 | 0.21 | 0.27 | 0.13 |
Rare earth elements (ppm) | ||||||||||||
La | 1.4 | 0.9 | 1.1 | 0.6 | 0.7 | 1.2 | 3.0 | 1.2 | 0.9 | 0.7 | 1.8 | 0.8 |
Ce | 1.9 | 2.0 | 1.7 | 1.0 | 3.4 | 2.1 | 6.3 | 2.3 | 1.4 | 2.4 | 4.1 | 1.9 |
Pr | 0.2 | 0.13 | 0.18 | 0.07 | 0.17 | 0.27 | 0.61 | 0.31 | 0.15 | 0.19 | 0.43 | 0.15 |
Nd | 0.7 | 0.44 | 0.7 | 0.2 | 0.6 | 1.0 | 2.2 | 1.1 | 0.6 | 0.8 | 1.7 | 0.5 |
Sm | 0.2 | 0.14 | 0.21 | 0.08 | 0.16 | 0.21 | 0.49 | 0.25 | 0.19 | 0.27 | 0.47 | 0.16 |
Eu | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | 0.04 | 0.03 | 0.03 | 0.05 | 0.03 |
Gd | 0.21 | 0.11 | 0.21 | 0.12 | 0.15 | 0.19 | 0.43 | 0.24 | 0.18 | 0.43 | 0.46 | 0.17 |
Tb | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.06 | 0.03 | 0.03 | 0.06 | 0.06 | 0.02 |
Dy | 0.09 | 0.1 | 0.15 | 0.09 | 0.11 | 0.15 | 0.28 | 0.16 | 0.17 | 0.36 | 0.27 | 0.1 |
Ho | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.05 | 0.03 | 0.03 | 0.08 | 0.04 | 0.02 |
Er | 0.06 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.14 | 0.07 | 0.07 | 0.21 | 0.09 | 0.06 |
Tm | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 |
Yb | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.12 | 0.06 | 0.06 | 0.2 | 0.06 | 0.07 |
Lu | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Yao, Y.; Liu, J.; Li, Z.; Jia, S.; Pang, Y. Geology and Petrogeochemistry of Lijiapuzi Nb-Ta Granitic Pegmatite Deposit: Implications for Ore Genesis and Prospecting. Appl. Sci. 2022, 12, 2542. https://doi.org/10.3390/app12052542
Fu J, Yao Y, Liu J, Li Z, Jia S, Pang Y. Geology and Petrogeochemistry of Lijiapuzi Nb-Ta Granitic Pegmatite Deposit: Implications for Ore Genesis and Prospecting. Applied Sciences. 2022; 12(5):2542. https://doi.org/10.3390/app12052542
Chicago/Turabian StyleFu, Jianfei, Yuzeng Yao, Jing Liu, Zining Li, Sanshi Jia, and Yemao Pang. 2022. "Geology and Petrogeochemistry of Lijiapuzi Nb-Ta Granitic Pegmatite Deposit: Implications for Ore Genesis and Prospecting" Applied Sciences 12, no. 5: 2542. https://doi.org/10.3390/app12052542
APA StyleFu, J., Yao, Y., Liu, J., Li, Z., Jia, S., & Pang, Y. (2022). Geology and Petrogeochemistry of Lijiapuzi Nb-Ta Granitic Pegmatite Deposit: Implications for Ore Genesis and Prospecting. Applied Sciences, 12(5), 2542. https://doi.org/10.3390/app12052542