Competing Miners: A Synergetic Solution for Combining Blockchain and Edge Computing in Unmanned Aerial Vehicle Networks
Abstract
:1. Introduction
1.1. Blockchain
1.2. Edge Computing in UAV Networks
1.3. Blockchain Combined with Edge Computing in UAV Networks
1.4. Study Overview
2. Related Works
2.1. Parallel PoW Mining
2.2. Blockchain in UAV Networks
3. Concept and Working Principle of Competing Miners in a Blockchain
3.1. Proof-of-Work
The Definition of Difficulty
3.2. The Concept of Competing Miners
- First, the data created by a participant are sent to multiple competing miners (not a particular single miner, as in the traditional blockchain) to solve the PoW and create a block (step (1) in Figure 3).
- Second, the data are mined by a set amount of competing miners per participant, where they compete on being the first to mine the data into a block (step (2) in Figure 3; in this case, K = 2 miners).
- Third, after mining is finished, the block is sent back to the participant for identification (step (3) in Figure 3). Specifically, if two or more miners complete the mining task almost at the same time, then the participant has to identify which miner completed it first.
4. Proposed Frameworks with the Utilization of Competing Miners
4.1. The Impact of Competing Miners in a Blockchain
Experiments and Results
4.2. EC-Enabled Blockchain Network with Multiple Competing Miners
Experiments and Results
4.3. Blockchained EC with Hierarchical Competing Miners
Experiments and Results
5. Discussion and Conclusions
5.1. Application Scenarios
5.2. Technical Challenges
5.3. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 17 July 2021).
- Xiong, Z.; Zhang, Y.; Niyato, D.; Wang, P.; Han, Z. When mobile blockchain meets edge computing. IEEE Commun. Mag. 2018, 56, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Adewumi, T.P.; Liwicki, M. Inner For-Loop for Speeding Up Blockchain Mining. Open Comput. Sci. 2020, 10, 42–47. [Google Scholar] [CrossRef]
- Hazari, S.S.; Mahmoud, Q.H. A Parallel Proof of Work to Improve Transaction Speed and Scalability in Blockchain Systems. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 916–921. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Corcoran, P.; Datta, S.K. Mobile-edge computing and the internet of things for consumers: Extending cloud computing and services to the edge of the network. IEEE Consum. Electron. Mag. 2016, 5, 73–74. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y. Mobile Edge Computing in Unmanned Aerial Vehicle Networks. IEEE Wirel. Commun. 2020, 27, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-J.; Han, Y.; Kim, S.-Y.; Lee, A.-Y.; Kim, G. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery. Sensors 2019, 19, 1651. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dai, H.-N.; Wang, Q.; Shukla, M.K.; Imran, M. Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Comput. Commun. 2020, 155, 66–83. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018, 82, 395–411. [Google Scholar] [CrossRef]
- Narbayeva, S.; Bakibayev, T.; Abeshev, K.; Makarova, I.; Shubenkova, K.; Pashkevich, A. Blockchain technology on the way of autonomous vehicles development. Transp. Res. Procedia 2020, 44, 168–175. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for IoT security and privacy: The case study of a smart home. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 618–623. [Google Scholar]
- Dwivedi, A.; Srivastava, G.; Dhar, S.; Singh, R. A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 2019, 19, 326. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-Y. A study on the application of blockchain to the edge computing-based Internet of Things. J. Digit. Converg. 2019, 17, 219–228. [Google Scholar]
- Stanciu, A. Blockchain based distributed control system for edge computing. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 29–31 May 2017; pp. 667–671. [Google Scholar]
- Liu, S.M.; Yu, F.R.; Teng, Y.; Leung, V.C.M.; Song, M. Computation offloading and content caching in wireless blockchain networks with mobile edge computing. IEEE Trans. Veh. Technol. 2018, 67, 11008–11021. [Google Scholar] [CrossRef]
- Rahman, M.A. Blockchain-based mobile edge computing framework for secure therapy applications. IEEE Access 2018, 6, 72469–72478. [Google Scholar] [CrossRef]
- Adewumi, T.P. Inner loop program construct: A faster way forprogram execution. Open Comput. Sci. 2018, 8, 115–122. [Google Scholar] [CrossRef]
- Mehta, P.; Gupta, R.; Tanwar, S. Blockchain envisioned UAV networks: Challenges, solutions, and comparisons. Comput. Commun. 2020, 151, 518–538. [Google Scholar] [CrossRef]
- Islam, A.; Shin, S.Y. BUS: A Blockchain-Enabled Data Acquisition Scheme with the Assistance of UAV Swarm in Internet of Things. IEEE Access 2019, 7, 103231–103249. [Google Scholar] [CrossRef]
- Gupta, R.; Shukla, A.; Mehta, P.; Bhattacharya, P.; Tanwar, S.; Tyagi, S.; Kumar, N. VAHAK: A Blockchain-based Outdoor Delivery Scheme using UAV for Healthcare 4.0 Services. In Proceedings of the IEEE INFOCOM 2020, Toronto, ON, Canada, 6–9 July 2020; pp. 255–260. [Google Scholar]
- Aggarwal, S.; Kumar, N.; Alhussein, M.; Muhammad, G. Blockchain-Based UAV Path Planning for Healthcare 4.0: Current Challenges and the Way Ahead. IEEE Netw. 2021, 35, 20–29. [Google Scholar] [CrossRef]
- Islam, A.; Shin, S.Y. BUAV: A blockchain based secure UAV-assisted data acquisition scheme in Internet of Things. J. Commun. Netw. 2019, 21, 491–502. [Google Scholar] [CrossRef]
- Lei, K.; Zhang, Q.; Lou, J.; Bai, B.; Xu, K. Securing ICN-Based UAV Ad Hoc Networks with Blockchain. IEEE Commun. Mag. 2019, 57, 26–32. [Google Scholar] [CrossRef]
- Rana, T.; Shankar, A.; Sultan, M.K.; Patan, R.; Balusamy, B. An Intelligent approach for UAV and Drone Privacy Security Using Blockchain Methodology. In Proceedings of the 2019 9th International Conference on Cloud Computing, Noida, India, 10–11 January 2019; pp. 162–167. [Google Scholar]
- Gai, K.; Wu, Y.; Zhu, L.; Choo, K.-K.R.; Xiao, B. Blockchain-Enabled Trustworthy Group Communications in UAV Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4118–4130. [Google Scholar] [CrossRef]
- Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the Security and Performance of Proof of Work Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16), Vienna, Austria, 24–28 October 2016; pp. 3–16. [Google Scholar]
- Damianou, A.; Angelopoulos, C.M.; Katos, V. An architecture for blockchain over edge-enabled IoT for smart circular cities. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019; pp. 465–472. [Google Scholar]
- Kumar, T.; Harjula, E.; Ejaz, M.; Manzoor, A.; Porambage, P.; Ahmad, I.; Liyanage, M.; Braeken, A.; Ylianttila, M. BlockEdge: Blockchain-edge framework for industrial IoT networks. IEEE Access 2020, 8, 154166–154185. [Google Scholar] [CrossRef]
- Akkaoui, R.; Hei, X.; Cheng, W. EdgeMediChain: A hybrid edge blockchain-based framework for health data exchange. IEEE Access 2020, 8, 113467–113486. [Google Scholar] [CrossRef]
- 51% Attack Definition. Available online: https://www.investopedia.com/terms/1/51-attack.asp (accessed on 22 July 2021).
- Shang, B.; Liu, L.; Ma, J.; Fan, P. Unmanned Aerial Vehicle Meets Vehicle-to-Everything in Secure Communications. IEEE Commun. Mag. 2019, 57, 98–103. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. Deep Learning on Multi Sensor Data for Counter UAV Applications—A Systematic Review. Sensors 2019, 19, 4837. [Google Scholar]
- Kim, H.; Park, J.; Bennis, M.; Kim, S. Blockchained on-device federated learning. IEEE Commun. Lett. 2020, 24, 1279–1283. [Google Scholar] [CrossRef] [Green Version]
Cryptocurrency | Transactions per Second | Average Transaction Confirmation Time |
---|---|---|
Bitcoin | 3–7 | 25 min |
Ethereum | 15–20 | 2 min |
Ripple | 1500 | 4 s |
Bitcoin Cash | 61 | 60 min |
Cardano | 5–7 | 3–5 min |
Litecoin | 26 | 30 min |
Monero | 4 | 30 min |
Neo | 1000 | 15–20 s |
Dash | 48 | 2–10 min |
Avg Mining Time (s)/Difficulty | Single (1) Miner | 3 Parallel Miners | 5 Parallel Miners | 3 Competing Miners | 5 Competing Miners |
---|---|---|---|---|---|
D = 5 | 60 | 53 | 45 | 23 | 18 |
D = 6 | 24 | 180 | 160 | 159 | 90 |
D = 7 | 895 | 710 | 590 | 531 | 450 |
Avg Latency (s) | D = 4 | D = 5 | D = 6 |
---|---|---|---|
Baseline (single miner) | 0.36 | 0.73 | 1.17 |
Blockchained EC (K = 2) | 0.21 (71%) | 0.37 (97%) | 0.65 (80%) |
Blockchained EC (K = 3) | 0.14 (157%) | 0.25 (192%) | 0.53 (120%) |
Blockchained EC (K = 4) | 0.20 (80%) | 0.22 (231%) | 0.33 (254%) |
Avg Usage (W) | D = 4 | D = 5 | D = 6 |
---|---|---|---|
Baseline (single miner) | 6.45 W | 12.9 W | 20.6 W |
Blockchained EC (K = 2) | 5.56 W (16%) | 9.79 W (31%) | 17.4 W (18%) |
Blockchained EC (K = 3) | 5.17 W (24%) | 8.68 W (48%) | 18.9 W (9%) |
Blockchained EC (K = 4) | 8.27 W (−22%) | 8.02 W (60%) | 13.2 W (56%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsen, J.M.; Park, J.-H.; Yun, S.; Kang, J.-M.; Jung, H. Competing Miners: A Synergetic Solution for Combining Blockchain and Edge Computing in Unmanned Aerial Vehicle Networks. Appl. Sci. 2022, 12, 2581. https://doi.org/10.3390/app12052581
Nilsen JM, Park J-H, Yun S, Kang J-M, Jung H. Competing Miners: A Synergetic Solution for Combining Blockchain and Edge Computing in Unmanned Aerial Vehicle Networks. Applied Sciences. 2022; 12(5):2581. https://doi.org/10.3390/app12052581
Chicago/Turabian StyleNilsen, Jacob Mathias, Jun-Hyun Park, Sangseok Yun, Jae-Mo Kang, and Heechul Jung. 2022. "Competing Miners: A Synergetic Solution for Combining Blockchain and Edge Computing in Unmanned Aerial Vehicle Networks" Applied Sciences 12, no. 5: 2581. https://doi.org/10.3390/app12052581
APA StyleNilsen, J. M., Park, J. -H., Yun, S., Kang, J. -M., & Jung, H. (2022). Competing Miners: A Synergetic Solution for Combining Blockchain and Edge Computing in Unmanned Aerial Vehicle Networks. Applied Sciences, 12(5), 2581. https://doi.org/10.3390/app12052581