Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, H.; Zhang, J.; Wei, M.; Huang, J.; Chen, H.; Yang, C. Enhanced energy storage density performance in (Pb0.97La0.03)(Zr0.5Sn0.44Ti0.0.6)-BiYO3 anti-ferroelectric composite ceramics. J. Mater. Sci. 2017, 28, 832–838. [Google Scholar]
- Mishra, A.; Majumdar, B.; Ranjan, R. A complex lead-free (Na, Bi, Ba)(Ti, Fe)O3 single phase perovskite ceramic with a high energy density and high discharge-efficiency for solid state capacitor applications. J. Eur. Ceram. Soc. 2017, 37, 2379–2384. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feterira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for high energy density capacitors: Current status and future perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Gurpinar, E.; Ozpineci, B. High-Energy Density Capacitors for Electric Vehicle Traction Inverters. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020. [Google Scholar]
- Zhao, Y.; Hao, X.; Zhang, Q. Energy-Storage Properties and Electrocaloric Effect of Pb(1-3x/2)Lax(Zr0.85Ti0.15O3 Antiferroelectric Thick Films. ACS Appl. Mater. Interfaces 2014, 14, 11633–11639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciuchi, I.V.; Mitoseriu, L.; Galassi, C. Antiferroelectric to Ferroelectric Crossover and Energy Storage Properties of (Pb1-XLaX)(Zr0.90Ti0.10)1-x/4O3 (0.02≤x≤0.04) Ceramics. J. Am. Ceram. Soc. 2016, 99, 2382–2387. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.; Zhang, Q. Enhanced energy-storage performance and electrocaloric effect in compositionally graded Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. Ceram. Int. 2016, 42, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, Y.; Sun, N.; Hao, X. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitor. Inorg. Chem. Front. 2020, 6, 756–764. [Google Scholar] [CrossRef]
- Xie, J.; Yao, M.; Gao, W.; Su, Z.; Yio, X. Ultrahigh breakdown strength and energy density in PLZST@PBSAZM antiferroelectric ceramics based on core-shell structure. J. Eur. Ceram. Soc. 2019, 39, 1050–1056. [Google Scholar] [CrossRef]
- Li, C.; Yao, M.; Gao, W.; Yao, X. High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer. Ceram. Int. 2020, 46, 722–730. [Google Scholar] [CrossRef]
- Xu, R.; Zhu, Q.; Tian, J.; Feng, Y.; Xu, Z. Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics. Ceram. Int. 2017, 43, 2481–2485. [Google Scholar] [CrossRef] [Green Version]
- Somwan, S.; Ngamjarurojana, A.; Limpichaipanit, A. Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO co-doping. Ceram. Int. 2016, 42, 10690–10696. [Google Scholar] [CrossRef]
- Roca, R.A.; Botero, E.R.; Guerrero, F.; Guerra, J.D.S.; Garcia, D.; Eiras, J.A. Effect of the sintering conditions on the electrical properties of Nd3+ modified PLZT ceramics. J. Phys. D Appl. Phys. 2008, 41, 045410. [Google Scholar] [CrossRef]
- Limpichaipanit, A.; Ngamjarurojana, A. Effecot of PbO/CuO addition to Microstructure and Electrical Properties of PLZT 9/65/35. Ferroelectrics 2015, 486, 57–65. [Google Scholar] [CrossRef]
- Zheng, M.P.; Hou, Y.D.; Ge, H.Y.; Zhu, M.K.; Yan, H. Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN-0.8PZT ceramics. J. Eur. Ceram. Soc. 2013, 33, 1447–1456. [Google Scholar] [CrossRef]
- Wang, D.W.; Cao, M.S.; Yuan, J.; Lu, R.; Li, H.B.; Lin, H.B.; Zhao, Q.L.; Zhang, D.Q. Effect of sintering temperature and time on densification, microstructure and properties of the PZT/ZnO nanowhisker piezoelectric composite. J. Alloys Compd. 2011, 509, 6980–6986. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Wei, L.; Chang, Y. Effect of ZnO addition on the sintering and electrical properties of (Mn, W)-doped PZT-PMS-PZN ceramics. Mater. Res. Bull. 2009, 44, 638–643. [Google Scholar] [CrossRef]
- Corker, D.L.; Whatmore, R.W.; Ringgaard, E.; Wolny, W.W. Liquid-phase sintering of PZT ceramics. J. Eur. Ceram. Soc. 2000, 20, 2039–2045. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Xue, L.; Zhang, Y. Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate ceramics on microstructure and electric properties. J. Phys. Chem. Solids 2007, 68, 2008–2013. [Google Scholar] [CrossRef]
- Dan, Y.; Xu, H.; Zhang, Y.; Zou, K.; Zhang, Q.; Lu, Y.; Chang, G.; Zhang, Q.; He, Y. High-energy density of Pb0.97La0.02(Zr0.5Sn0.45Ti0.05)O3 antiferroelectric ceramics prepared by sol-gel method with low-cost dibutyltin oxide. J. Am. Ceram. Soc. 2019, 102, 1776–17983. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, X.; Yang, T.; Wang, J. Composition-dependent dielectric properties and energy storage performance of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. J. Electroceramics 2014, 32, 307–310. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Zhang, Y.; Song, X.; Zhu, J.; Baturin, I.; Chen, J. Effect of barium content on dielectric and energy storage properties of (Pb,La,Ba)(Zr,Sn,Ti)O3 ceramics. Ceram. Int. 2015, 41, 3030–3035. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, X.; Hong, W.; Luo, B.; Zhao, Q.; Li, L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J. Am. Ceram. Soc. 2018, 101, 5487–5496. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Wang, L.; Zhang, Y. The characteristics of (Pb, La)(Zr, Sn, Ti)O3 ceramics synthesized by coprecipitation method compared to conventional mixed oxide method. J. Mater. Sci. 2011, 22, 162–166. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Hao, X.; Xu, J. Preparation and energy-storage performance of PLZT antiferroelectric thick films via sol-gel method. Ceram. Int. 2013, 39, 513–516. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-S.; Kim, D.-C.; Shin, H.-S.; Yeo, D.-H.; Lee, J.-H. Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT. Appl. Sci. 2022, 12, 2591. https://doi.org/10.3390/app12052591
Choi J-S, Kim D-C, Shin H-S, Yeo D-H, Lee J-H. Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT. Applied Sciences. 2022; 12(5):2591. https://doi.org/10.3390/app12052591
Chicago/Turabian StyleChoi, Jeoung-Sik, Dong-Chul Kim, Hyo-Soon Shin, Dong-Hun Yeo, and Joon-Hyung Lee. 2022. "Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT" Applied Sciences 12, no. 5: 2591. https://doi.org/10.3390/app12052591
APA StyleChoi, J. -S., Kim, D. -C., Shin, H. -S., Yeo, D. -H., & Lee, J. -H. (2022). Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT. Applied Sciences, 12(5), 2591. https://doi.org/10.3390/app12052591