Improvement of the Standard Chimney Electrostatic Precipitator by Dividing the Flue Gas Stream into a Larger Number of Pipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Combustion Device
2.2. Model of Electrostatic Precipitator with HV Power Supply
2.3. Graviometric Method for Measuring PM Emissions
3. Results
3.1. Analysis of Measurements Results
3.2. The Analysis of Detected Dependencies
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelz, J.; Brunner, T.; Obernberger, I.; Jalava, P.; Hirvonen, M. PM Emissions from Old and Modern Biomass Combustion Systems and Their Health Effects. In Proceedings of the 18th European Biomass Conference, Lyon, France, 3–7 May 2010; pp. 1–13. [Google Scholar]
- Shen, G. Changes from traditional solid fuels to clean household energies—Opportunities in emission reduction of primary PM2,5 from residual cook stoves in China. Biomass Bioenergy 2016, 86, 28–35. [Google Scholar] [CrossRef]
- Čajova, K.N.; Čaja, A.; Patsch, M.; Holubčík, M.; Durčanský, P. Dependance of the Flue Gas Flow on the Setting of the Separation Baffle in the Flue Gas Tract. Appl. Sci. 2021, 11, 2961. [Google Scholar] [CrossRef]
- Sulovcova, K.; Nosek, R.; Jandačka, J.; Michal, H. Geometrical Optimization of the Flue Gas Path with Regard to the Reduction of Particulate Matter. Emiss. Control Sci. Technol. 2018, 4, 40–44. [Google Scholar] [CrossRef]
- Tan, C.Z.; Zhang, Y. Advances in Centrifugal Separators for Particulate Matter Control from Stationary Sources. J. Therm. Sci. 2002, 11, 283–288. [Google Scholar] [CrossRef]
- Kantová, N.; Jandačka, J.; Sladek, S.; Holubčik, M.; Čaja, A. The flowing of particulate matter through baffles depending on their number in the flue gas tract. Transp. Res. Procedia 2019, 40, 724–728. [Google Scholar] [CrossRef]
- Schmatloch, V.; Rauch, S. Design and characterization of an electrostatic precipitator for small heating appliances. J. Electrost. 2005, 63, 85–100. [Google Scholar] [CrossRef]
- Dastori, K.; Kolhe, M.; Mallard, C.; Makin, B. Electrostatic precipitation in a small scale wood combustion furnace. J. Electrost. 2011, 69, 466–472. [Google Scholar] [CrossRef]
- Rodriguez, L.G.J.; Suhonen, H.; Laitinen, A.; Tissari, J.; Kortelainen, M.; Tiitta, P.; Lahde, A.; Keskinen, J.; Jokiniemi, J.; Sippula, O. A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers. Renew. Energy 2020, 145, 521–529. [Google Scholar] [CrossRef]
- Hartmann, H.; Turowski, P.; Kiener, S. Electrostatic precipitators for small-scale wood combustion systems—Results from lab- and field tests. In Proceedings of the Central European Biomass Conference (CEBC), Graz, Austria, 26–28 January 2011; pp. 1–30. [Google Scholar]
- Drga, J.; Kubas, Š.; Martvoňová, L. Numerical model expressing the amount of capture of particulate matter by an electrostatic precipitator for small heat sources. Adv. Therm. Process. Energy Transform. 2020, 3, 81–85. [Google Scholar]
- Bolga, A.; Paur, R.H.; Woletz, K. Development and Study of an Electrostatic Precipitator for small Scale Wood Combustion. Int. J. Plasma Environ. Sci. Technol. 2011, 5, 168–173. [Google Scholar]
- Wen, T.Y.; Wang, H.; Krichtafovitch, I.; Mamishev, V.A. Novel electrodes of an electrostatic precipitator for air filtration. J. Electrost. 2015, 73, 117–124. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoo, H.J.; Hawang, S.Y.; Kim, G.H. Removal of Particulate Matter in a Tubular Wet Electrostatic Precipitator Using a Water Collection Electrode. Sci. World J. 2012, 2012, 532354. [Google Scholar] [CrossRef] [Green Version]
- Jaworek, A.; Krupa, A.; Czech, T. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. J. Electrost. 2007, 3, 133–155. [Google Scholar] [CrossRef]
- Intra, P.; Limueadpahi, P.; Tippayawong, N. Particulate Emission Reduction from Biomass Burning in Small Combustion Systems with a Multiple Tubular Electrostatic Precipitator. Part. Sci. Technol. J. 2010, 28, 547–565. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Marchewicz, A.; Czech, T. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renew. Sustain. Energy Rev. 2021, 137, 110446. [Google Scholar] [CrossRef]
- Berhardt, A.; Lezsovits, F.; Groß, B. Integrated Electrostatic Precipitator for Small-Scaled Biomass Boilers. Chem. Eng. Technol. 2016, 40, 2. [Google Scholar] [CrossRef]
- Nosek, R.; Holubčík, M.; Papučík, Š. Emission Controls Using Different Temperature of Combustion Air. Sci. World J. 2014, 2014, 487549. [Google Scholar] [CrossRef]
- Jedrusik, B.; Swierczok, A.; Teisseyre, R. Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design. Powder Technol. 2003, 135, 295–301. [Google Scholar] [CrossRef]
- Chang, L.C.; Bai, H. Effects of Some Geometric Parameters on the Electrostatic Precipitator Efficiency at Different Operation Indexes. Aerosol Sci. Technol. 2020, 33, 228–238. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, C.; Liu, S.; Guo, Y.; Liang, C.; Zhang, X.; Zhang, Y.; Gao, X. Insights into the role of particle space charge effects in particle precipitation processes in electrostatic precipitator. Powder Technol. 2018, 339, 606–614. [Google Scholar] [CrossRef]
- Kasdi, A. Computation and measurement of corona current density and V–I characteristics in wires-to-plates electrostatic precipitator. J. Electrost. 2016, 81, 1–8. [Google Scholar] [CrossRef]
- Podliński, J.; Dekowski, J.; Mizeraczyk, J.; Brocilo, D.; Chang, S.J. Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. J. Electrost. 2006, 64, 259–262. [Google Scholar] [CrossRef]
- Kumar, A.; Parihar, S.; Hammer, T.; Sridhar, G. Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas. Renew. Energy 2015, 74, 875–883. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, C.; Liu, S.; Guo, Y.; Liang, C.; Wang, Y.; Hu, D.; Gao, X. A combined wet electrostatic precipitator for efficiently eliminating fine particle penetration. Fuel Process. Technol. 2018, 180, 122–129. [Google Scholar] [CrossRef]
- Peukert, W.; Wadenpohl, C. Industrial separation of fine particles with difficult dust properties. Powder Technol. 2001, 118, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Bayless, J.D.; Alam, M.K.; Radcliff, R.; Caine, J. Membrane-based wet electrostatic precipitation. Fuel Process. Technol. 2004, 85, 781–798. [Google Scholar] [CrossRef]
ESP 1 | Temperature | Draft | Current | Voltage | Power |
---|---|---|---|---|---|
One pipe | 256 ± 3 °C | 12.9 ± 0.7 Pa | 0.8 ± 0.1 mA | 60 ± 0.2 kV | 50 ± 2 W |
Four pipes | 240 ± 3 °C | 12.2 ± 0.7 Pa | 1.2 ± 0.1 mA | 20 ± 0.2 kV | 25 ± 2 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trnka, J.; Jandačka, J.; Holubčík, M. Improvement of the Standard Chimney Electrostatic Precipitator by Dividing the Flue Gas Stream into a Larger Number of Pipes. Appl. Sci. 2022, 12, 2659. https://doi.org/10.3390/app12052659
Trnka J, Jandačka J, Holubčík M. Improvement of the Standard Chimney Electrostatic Precipitator by Dividing the Flue Gas Stream into a Larger Number of Pipes. Applied Sciences. 2022; 12(5):2659. https://doi.org/10.3390/app12052659
Chicago/Turabian StyleTrnka, Juraj, Jozef Jandačka, and Michal Holubčík. 2022. "Improvement of the Standard Chimney Electrostatic Precipitator by Dividing the Flue Gas Stream into a Larger Number of Pipes" Applied Sciences 12, no. 5: 2659. https://doi.org/10.3390/app12052659
APA StyleTrnka, J., Jandačka, J., & Holubčík, M. (2022). Improvement of the Standard Chimney Electrostatic Precipitator by Dividing the Flue Gas Stream into a Larger Number of Pipes. Applied Sciences, 12(5), 2659. https://doi.org/10.3390/app12052659