Active Tendon Control of Stay Cable by a Giant Magnetostrictive Actuator Considering Time-Delay
Abstract
:1. Introduction
2. The State Equation of a Small Sag Cable with Axial Force
3. Simplification and Verification of Bilinear Controlling Equations
4. The Time-Delay Compensation Method of the Controlled Cable
5. Giant Magnetostrictive Actuator and Its Dynamic Model
6. Simulation for the Active Control of Cable with the Time-Delay
6.1. Free Vibration
6.2. Harmonic Excitation
6.3. Random Excitation
7. Active Control Experiment of Cable with the Time-Delay
7.1. Experimental Set-Up
7.2. Experimental Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsumoto, M.; Yagi, T.; Shigemura, Y.; Tsushima, D. Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity. J. Wind Eng. Ind. Aerodyn. 2001, 89, 633–647. [Google Scholar] [CrossRef]
- Gao, D.; Chen, W.; Zhang, R.; Huang, Y.; Li, H. Multi-modal vortex-and rain-wind-induced vibrations of an inclined flexible cable. Mech. Syst. Signal Process. 2019, 118, 245–258. [Google Scholar] [CrossRef]
- Xu, Y.L.; Ko, J.M.; Zhang, W.S. Vibration studies of Tsing Ma suspension bridge. J. Bridge Eng. 1997, 2, 149–156. [Google Scholar] [CrossRef]
- Hikami, Y.; Shiraishi, N. Rain-Wind Vibration of Cables in Cable-Stayed Bridges. J. Wind Eng. Ind. Aerodyn. 1998, 29, 409–418. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Wang, X.Y.; Chen, Z.Q.; Ko, J.M. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge. J. Wind Eng. Ind. Aerodyn. 2007, 95, 303–328. [Google Scholar] [CrossRef]
- Zuo, D.; Jones, N.P. Interpretation of field observations of wind-and rain-wind-induced stay cable vibrations. J. Wind Eng. Ind. Aerodyn. 2010, 98, 73–87. [Google Scholar] [CrossRef]
- Royer-Carfagni, G.F. Parametric-resonance-induced cable vibrations in network cable-stayed bridges. A continuum approach. J. Sound Vib. 2003, 262, 1191–1222. [Google Scholar] [CrossRef]
- Macdonald, J. Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation. J. Sound Vib. 2016, 363, 473–494. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Du, X. Experimental investigation of rain–wind-induced vibration of cables in cable-stayed bridges and its mitigation. J. Wind Eng. Ind. Aerodyn. 2005, 93, 79–95. [Google Scholar] [CrossRef]
- Chang, Y.; Zhao, L.; Ge, Y. Experimental investigation on mechanism and mitigation of rain–wind-induced vibration of stay cables. J. Fluids Struct. 2019, 88, 257–274. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Alauddin, M. Control of cable vibrations using secondary cable with special reference to nonlinearity and interaction. Eng. Struct. 2003, 25, 801–816. [Google Scholar] [CrossRef]
- Lazar, I.F.; Neild, S.A.; Wagg, D.J. Vibration suppression of cables using tuned inerter dampers. Eng. Struct. 2016, 122, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Ni, Y.Q.; Ko, J.M.; Chen, Z.Q. Optimal design of viscous dampers for multi-mode vibration control of bridge cables. Eng. Struct. 2005, 27, 792–800. [Google Scholar] [CrossRef]
- Chen, L.; Sun, L.; Nagarajaiah, S. Cable vibration control with both lateral and rotational dampers attached at an intermediate location. J. Sound Vib. 2016, 377, 38–57. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S.; Li, J.; Spencer, B.F. Dynamic behavior of stay cables with passive negative stiffness dampers. Smart Mater. Struct. 2016, 25, 75044. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Song, G.; Ou, J. Investigation of vibration mitigation of stay cables incorporated with superelastic shape memory alloy dampers. Smart Mater. Struct. 2007, 16, 2202. [Google Scholar] [CrossRef]
- Liu, M.; Song, G.; Li, H. Non-model-based semi-active vibration suppression of stay cables using magneto-rheological fluid dampers. Smart Mater. Struct. 2007, 16, 1447. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Gao, H.; Wang, H. Development of a self-powered magnetorheological damper system for cable vibration control. Appl. Sci. 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Fujino, Y.; Warnitchai, P.; Pacheco, B.M. Active stiffness control of cable vibration. J. Appl. Mech. 1993, 60, 948–953. [Google Scholar] [CrossRef]
- Warnitchai, P.; Fujino, Y.; Susumpow, T. A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 1995, 187, 695–712. [Google Scholar] [CrossRef]
- Susumpow, T.; Fujino, Y. Active control of multimodal cable vibrations by axial support motion. J. Eng. Mech. 1995, 121, 964–972. [Google Scholar] [CrossRef]
- Achkire, Y.; Preumont, A. Active tendon control of cable-stayed bridges. Earthq. Eng. Struct. Dyn. 1996, 25, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Gattulli, V.; Alaggio, R.; Potenza, F. Analytical prediction and experimental validation for longitudinal control of cable oscillations. Int. J. Nonlinear Mech. 2008, 43, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Wang, X.; Wen, Q.; Wang, W.; Sun, H. Active control of stay cable vibration using a giant magnetostrictive actuator. J. Aerosp. Eng. 2018, 31, 4018074. [Google Scholar] [CrossRef]
- Smith, O.J. A controller to overcome dead time. ISA J. 1959, 6, 28–33. [Google Scholar]
- Qi, K.; Kuang, J.S. Time delay compensation in active closed-loop structural control. Mech. Res. Commun. 1995, 22, 129–135. [Google Scholar] [CrossRef]
- Li, B.; Rui, X.; Tian, W.; Cui, G. Neural-network-predictor-based control for an uncertain multiple launch rocket system with actuator delay. Mech. Syst. Signal Process. 2020, 141, 106489. [Google Scholar] [CrossRef]
- Meng, D.; Xia, P.; Lang, K.; Smith, E.C.; Rahn, C.D. Neural network based hysteresis compensation of piezoelectric stack actuator driven active control of helicopter vibration. Sens. Actuators A Phys. 2020, 302, 111809. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, X.; Zheng, Y. System identification with measurement noise compensation based on polynomial modulating function for fractional-order systems with a known time-delay. ISA Trans. 2018, 79, 62–72. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Teng, J.; Wang, Y. A compensation controller based on a regional pole-assignment method for AMD control systems with a time-varying delay. J. Sound Vib. 2018, 419, 18–32. [Google Scholar] [CrossRef]
- Yang, J.N.; Akbarpour, A.; Askar, G. Effect of time delay on control of seismic-excited buildings. J. Struct. Eng. 1990, 116, 2801–2814. [Google Scholar] [CrossRef]
- Soong, T.T. Active Structural Control: Theory and Practice; Longman Structural Engineering and Structural Mechanics Series; Longman: London, UK, 1990. [Google Scholar]
- Chung, L.L.; Reinhorn, A.M.; Soong, T.T. Experiments on active control of seismic structures. J. Eng. Mech. 1988, 114, 241–256. [Google Scholar] [CrossRef]
Diameter (mm) | Length (m) | Inclination (°) | Static Tension (N) | Mass Per Length (kg/m) | Damping Ratio of the First Three Modes (%) | Frequency of the First Three Modes (Hz) |
---|---|---|---|---|---|---|
1.58 | 6.1 | 0 | 219.1 | 1.335 | 0.6, 0.5, 0.5 | 1.02, 2.05, 3.08 |
Time-Delay Amounts (s) | Reduction without Time-Delay (%) | Reduction without Compensation of Time-Delay (%) | Reduction with Time-Delay Compensation (%) |
---|---|---|---|
0.00 | 57.13 | ||
0.05 | 56.06 | 55.37 | |
0.07 | 55.76 | 54.41 | |
0.09 | 42.12 | 51.90 | |
0.11 | 9.87 | 53.34 | |
0.13 | −12.26 | 54.23 |
Time-Delay Amounts (s) | Reduction without Time-Delay (%) | Reduction without Compensation of Time-Delay (%) | Reduction with Time-Delay Compensation (%) |
---|---|---|---|
0.00 | 72.13 | ||
0.09 | 64.62 | 71.08 | |
0.11 | 58.04 | 70.89 | |
0.13 | 31.41 | 69.15 | |
0.15 | divergence | 67.62 |
The Time-Delay (s) | Mitigating Ratio without Time-Delay (%) | Mitigating Ratio without Compensation with Time-Delay (%) | Mitigating Ratio with Time-Delay Compensation (%) |
---|---|---|---|
0.00 | 63.37 | ||
0.05 | 62.47 | 60.86 | |
0.07 | 60.66 | 60.49 | |
0.9 | 58.70 | 59.31 | |
0.11 | −15.12 | 59.12 | |
0.13 | divergence | 57.67 |
The Time-Delay (s) | Mitigating Ratio without Time-Delay (%) | Mitigating Ratio without Compensation with Time-Delay (%) | Mitigating Ratio with Time-Delay Compensation (%) |
---|---|---|---|
0.00 | 55.63 | ||
0.05 | 54.23 | 53.14 | |
0.07 | 52.62 | 52.55 | |
0.09 | 42.15 | 50.69 | |
0.11 | 18.77 | 50.51 | |
0.13 | divergence | 49.67 |
The Time-Delay (s) | Mitigating Ratio without Time-Delay (%) | Mitigating Ratio without Compensation with Time-Delay (%) | Mitigating Ratio with Time-Delay Compensation (%) |
---|---|---|---|
0.00 | 67.80 | ||
0.05 | 65.24 | 63.47 | |
0.07 | 60.89 | 61.55 | |
0.09 | 58.65 | 62.97 | |
0.11 | 47.83 | 62.68 | |
0.13 | −18.26 | 60.72 |
The Time-Delay (s) | Mitigating Ratio without Time-Delay (%) | Mitigating Ratio without Compensation with Time-Delay (%) | Mitigating Ratio with Time-Delay Compensation (%) |
---|---|---|---|
0.00 | 48.69 | ||
0.05 | 48.08 | 47.81 | |
0.07 | 46.72 | 46.24 | |
0.09 | 42.93 | 45.11 | |
0.11 | −35.18 (divergence) | 45.93 | |
0.13 | divergence | 44.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yang, Z.; Hu, R.; Hua, X.; Wang, X. Active Tendon Control of Stay Cable by a Giant Magnetostrictive Actuator Considering Time-Delay. Appl. Sci. 2022, 12, 2666. https://doi.org/10.3390/app12052666
Wang W, Yang Z, Hu R, Hua X, Wang X. Active Tendon Control of Stay Cable by a Giant Magnetostrictive Actuator Considering Time-Delay. Applied Sciences. 2022; 12(5):2666. https://doi.org/10.3390/app12052666
Chicago/Turabian StyleWang, Wenxi, Zhilin Yang, Renkang Hu, Xugang Hua, and Xiuyong Wang. 2022. "Active Tendon Control of Stay Cable by a Giant Magnetostrictive Actuator Considering Time-Delay" Applied Sciences 12, no. 5: 2666. https://doi.org/10.3390/app12052666
APA StyleWang, W., Yang, Z., Hu, R., Hua, X., & Wang, X. (2022). Active Tendon Control of Stay Cable by a Giant Magnetostrictive Actuator Considering Time-Delay. Applied Sciences, 12(5), 2666. https://doi.org/10.3390/app12052666