Effect of Novel Aspergillus and Neurospora Species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates, Additive and Inoculum
2.2. Ensiling Process
2.3. Physicochemical Measurements
2.4. Biochemical Methane Potential (BMP) Tests
2.5. Kinetic Evaluation and Data Analysis
3. Results and Discussion
3.1. Characteristics of Sugar Beet Leaves before Ensiling
3.2. Effect of Additive on Silage Characteristics
3.3. Effect of Additive on Biomethane Potential
3.4. Kinetic Evaluation and Analysis
3.5. Circularity of Materials and Management
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tenorio, A.T. Sugar Beet Leaves for Functional Ingredients. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, July 2020. [Google Scholar]
- Modelska, M.; Binczarski, M.J.; Dziugan, P.; Nowak, S.; Romanowska-Duda, Z.; Sadowski, A.; Witońska, I.A. Potential of Waste Biomass from the Sugar Industry as a Source of Furfural and Its Derivatives for Use as Fuel Additives in Poland. Energies 2020, 13, 6684. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A Review Regarding the Use of Molasses in Animal Nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Nagle, N.J.; Donohoe, B.S.; Wolfrum, E.J.; Kuhn, E.M.; Haas, T.J.; Ray, A.E.; Wendt, L.M.; Delwiche, M.E.; Weiss, N.D.; Radtke, C. Chemical and Structural Changes in Corn Stover After Ensiling: Influence on Bioconversion. Front. Bioeng. Biotechnol. 2020, 8, 739. [Google Scholar] [CrossRef] [PubMed]
- Nolan, P.; Doyle, E.M.; Grant, J.; O’Kiely, P. Upgrading grass biomass during ensiling with contrasting fibrolytic enzyme additives for enhanced methane production. Renew. Energy 2018, 115, 462–473. [Google Scholar] [CrossRef]
- Sun, H.; Cui, X.; Li, R.; Guo, J.; Dong, R. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. Bioresour. Technol. 2021, 342, 125928. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Liu, J.; Yang, F.; Zhu, W.; Yuan, X.; Hu, Y.; Cui, Z.; Wang, X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 2017, 241, 349–359. [Google Scholar] [CrossRef]
- Wu, P.; Li, L.; Jiang, J.; Sun, Y.; Yuan, Z.; Feng, X.; Guo, Y. Effects of fermentative and non-fermentative additives on silage quality and anaerobic digestion performance of Pennisetum purpureum. Bioresour. Technol. 2020, 297, 122425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tao, X.; Li, J.; Jia, Y.; Shao, T. Enhancement of biomass conservation and enzymatic hydrolysis of rice straw by dilute acid-assisted ensiling pretreatment. Bioresour. Technol. 2021, 320, 124341. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Sales, G.F.C.; Schwan, R.F.; Ávila, C.L.S. Criteria for lactic acid bacteria screening to enhance silage quality. J. Appl. Microbiol. 2021, 130, 341–355. [Google Scholar] [CrossRef]
- Chaji, M.; Direkvandi, E.; Salem, A.Z.M. Ensiling of Conocarpus erectus tree leaves with molasses, exogenous enzyme and Lactobacillus plantarum impacts on ruminal sheep biogases production and fermentation. Agrofor. Syst. 2020, 94, 1611–1623. [Google Scholar] [CrossRef]
- Villa, R.; Rodriguez, L.O.; Fenech, C.; Anika, O.C. Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields. Renew. Sustain. Energy Rev. 2020, 134, 110401. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Huisingh, D.; Morone, P. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F.; Pecorino, B.; Porto, S.M.C. Assessment of Tomato Peels Suitable for Producing Biomethane within the Context of Circular Economy: A GIS-Based Model Analysis. Sustainability 2021, 13, 5559. [Google Scholar] [CrossRef]
- Strach, K. Determination of Total Solids (Dry Matter) and Volatile Solids (Organic Dry Matter). In Collection of Methods for Biogas: Methods to Determine Parameters for Analysis Purposes and Parameters that Describe Processes in the Biogas Sector; Liebetrau, J., Ed.; Federal Ministry for Economic Affairs and Energy (BMWi): Berlin, Germany, 2016; pp. 26–27. [Google Scholar]
- Weissbach, F.; Strubelt, C. Correcting the dry matter content of grass silages as a substrate for biogas production. Landtechnik 2008, 63, 210–211. [Google Scholar]
- Apelt, M. Determination of Aliphatic, Organic Acids and Benzaldehyde with Headspace GC. In Collection of Methods for Biogas: Methods to Determine Parameters for Analysis Purposes and Parameters that Describe Processes in the Biogas Sector; Liebetrau, J., Ed.; Federal Ministry for Economic Affairs and Energy (BMWi): Berlin, Germany, 2016; pp. 35–39. [Google Scholar]
- Mühlenberg, J. Determination of Sugars and Glucose Degradation Products. In Collection of Methods for Biogas: Methods to Determine Parameters for Analysis Purposes and Parameters that Describe Processes in the Biogas Sector; Liebetrau, J., Ed.; Federal Ministry for Economic Affairs and Energy (BMWi): Berlin, Germany, 2016; pp. 50–53. [Google Scholar]
- van Soest, P.J.; Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. Assoc. Off. Anal. Chem. 2020, 50, 50–55. [Google Scholar] [CrossRef]
- Dittrich-Zechendorf, M. Determination of total Kjeldahl nitrogen and crude protein. In Collection of Methods for Biogas: Methods to Determine Parameters for Analysis Purposes and Parameters that Describe Processes in the Biogas Sector; Liebetrau, J., Ed.; Federal Ministry for Economic Affairs and Energy (BMWi): Berlin, Germany, 2016; pp. 57–59. [Google Scholar]
- Dittrich-Zechendorf, M. Determination of Crude Fibre. In Collection of Methods for Biogas: Methods to Determine Parameters for Analysis Purposes and Parameters that Describe Processes in the Biogas Sector; Liebetrau, J., Ed.; Federal Ministry for Economic Affairs and Energy (BMWi): Berlin, Germany, 2016. [Google Scholar]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.-E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production—Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Weiß, K.; Kroschewski, B.; Auerbach, H. Formation of volatile organic compounds during the fermentation of maize as affected by sealing time and silage additive use. Arch. Anim. Nutr. 2020, 74, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.T.; Bayard, R.; Buffière, P. Mathematical modelling of the ensiling process before biogas production: Strengthening the links between biomass storage and anaerobic digestion. Chem. Eng. J. 2018, 350, 872–882. [Google Scholar] [CrossRef]
- Starke, P.; Hoffmann, C.M. Dry matter and sugar content as parameters to assess the quality of sugar beet varieties for anaerobic digestion. Agric./Landwirtsch. 2014, 139, 232–240. [Google Scholar] [CrossRef]
- Ge, X.; Chang, C.; Zhang, L.; Cui, S.; Luo, X.; Hu, S.; Qin, Y.; Li, Y. Chapter Five—Conversion of Lignocellulosic Biomass into Platform Chemicals for Biobased Polyurethane Application; Li, Y., Ge, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 161–213. [Google Scholar]
- Kiskini, A.; Vissers, A.; Vincken, J.-P.; Gruppen, H.; Wierenga, P.A. Effect of Plant Age on the Quantity and Quality of Proteins Extracted from Sugar Beet (Beta vulgaris L.) Leaves. J. Agric. Food Chem. 2016, 64, 8305–8314. [Google Scholar] [CrossRef]
- Kreuger, E.; Nges, I.A.; Björnsson, L. Ensiling of crops for biogas production: Effects on methane yield and total solids determination. Biotechnol Biofuels 2011, 4, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, S.U.; Hjort-Gregersen, K.; Vazifehkhoran, A.H.; Triolo, J.M. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresour. Technol. 2017, 245, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Beheary, M.S.; Hassan, R.A.; Ahmed, J.L.; Mosstafa, A. Optimization of In-Vessel Co-Composting of Sugar Beet Agro-Industrial Wastes Through Addition of Cane Vinasse. Glob. J. Environ. Res. 2019, 13, 17–32. [Google Scholar]
- Zauner, E.; Küntzel, U. Methane production from ensiled plant material. Biomass 1986, 10, 207–223. [Google Scholar] [CrossRef]
- Parawira, W.; Murto, M.; Zvauya, R.; Mattiasson, B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energy 2004, 29, 1811–1823. [Google Scholar] [CrossRef]
- Kiskini, A. Sugar Beet Leaves: From Biorefinery to Techno-Functionality. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, October 2017. [Google Scholar]
- Herrmann, C.; Heiermann, M.; Idler, C. Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour. Technol. 2011, 102, 5153–5161. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- McEniry, J.; Allen, E.; Murphy, J.D.; O’Kiely, P. Grass for biogas production: The impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems. Renew. Energy 2014, 63, 524–530. [Google Scholar] [CrossRef]
- Franco, R.T.; Buffière, P.; Bayard, R. Optimizing storage of a catch crop before biogas production: Impact of ensiling and wilting under unsuitable weather conditions. Biomass Bioenergy 2017, 100, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Larsen, S.U.; Ambye-Jensen, M.; Jørgensen, H.; Jørgensen, U. Ensiling of the pulp fraction after biorefining of grass into pulp and protein juice. Ind. Crops Prod. 2019, 139, 111576. [Google Scholar] [CrossRef]
- Bai, Y.; Rafiq, M.K.; Li, S.; Degen, A.A.; Mašek, O.; Sun, H.; Han, H.; Wang, T.; Joseph, S.; Bachmann, R.T.; et al. Biochar from pyrolyzed Tibetan Yak dung as a novel additive in ensiling sweet sorghum: An alternate to the hazardous use of Yak dung as a fuel in the home. J. Hazard. Mater. 2021, 403, 123647. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Sun, L.; Na, N.; Wang, C.; Yin, G.; Liu, S.; Xue, Y. Dynamics of Bacterial Community and Fermentation Quality in Leymus chinensis Silage Treated with Lactic Acid Bacteria and/or Water. Front. Microbiol. 2021, 12, 717120. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Jia, T.; Gao, R.; Xu, S.; Wu, Z.; Wang, B.; Yu, Z. Effects of Chopping Length and Additive on the Fermentation Quality and Aerobic Stability in Silage of Leymus chinensis. Processes 2020, 8, 1283. [Google Scholar] [CrossRef]
- Wang, C.; Nishino, N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J. Appl. Microbiol. 2013, 114, 1687–1695. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thip-uten, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef]
- Gallegos, D.; Wedwitschka, H.; Moeller, L.; Weinrich, S.; Zehnsdorf, A.; Nelles, M.; Stinner, W. Mixed silage of Elodea and wheat straw as a substrate for energy production in anaerobic digestion plants. Energy Sustain. Soc. 2018, 8, 110. [Google Scholar] [CrossRef]
- Guo, L.; Lu, Y.; Li, P.; Chen, L.; Gou, W.; Zhang, C. Effects of Delayed Harvest and Additives on Fermentation Quality and Bacterial Community of Corn Stalk Silage. Front. Microbiol. 2021, 12, 687481. [Google Scholar] [CrossRef]
- Li, P.; Tang, X.; Liao, C.; Li, M.; Chen, L.; Lu, G.; Huang, X.; Chen, C.; Gou, W. Effects of Additives on Silage Fermentation Characteristic and In Vitro Digestibility of Perennial Oat at Different Maturity Stages on the Qinghai Tibetan. Microorganisms 2021, 9, 2403. [Google Scholar] [CrossRef]
- Weide, T.; Baquero, C.D.; Schomaker, M.; Brügging, E.; Wetter, C. Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure). Biomass Bioenergy 2020, 132, 105442. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. VDI 4630 Fermentation of Organic Materials—Characteristics of the Substrates, Sampling, Collection of Material Data, fermentation Tests; Beuth Verlag: Berlin, Germany, 2016. [Google Scholar]
- Pakarinen, O.; Lehtomäki, A.; Rissanen, S.; Rintala, J. Storing energy crops for methane production: Effects of solids content and biological additive. Bioresour. Technol. 2008, 99, 7074–7082. [Google Scholar] [CrossRef] [PubMed]
- Kupryś-Caruk, M.; Choińska, R.; Dekowska, A.; Piasecka-Jóźwiak, K. Silage quality and biogas production from Spartina pectinata L. fermented with a novel xylan-degrading strain of Lactobacillus buchneri M B/00077. Sci. Rep. 2021, 11, 13175. [Google Scholar] [CrossRef] [PubMed]
- Janke, L.; McCabe, B.K.; Harris, P.; Hill, A.; Lee, S.; Weinrich, S.; Marchuk, S.; Baillie, C. Ensiling fermentation reveals pre-treatment effects for anaerobic digestion of sugarcane biomass: An assessment of ensiling additives on methane potential. Bioresour. Technol. 2019, 279, 398–403. [Google Scholar] [CrossRef]
- Brulé, M.; Oechsner, H.; Jungbluth, T. Exponential model describing methane production kinetics in batch anaerobic digestion: A tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst. Eng. 2014, 37, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Deng, L.; Liu, G.; Di Yang Liu, Y.; Chen, Z. A model for methane production in anaerobic digestion of swine wastewater. Water Res. 2016, 102, 464–474. [Google Scholar] [CrossRef]
- Song, L.; Li, D.; Cao, X.; Tang, Y.; Liu, R.; Niu, Q.; Li, Y.-Y. Optimizing biomethane production of mesophilic chicken manure and sheep manure digestion: Mono-digestion and co-digestion kinetic investigation, autofluorescence analysis and microbial community assessment. J. Environ. Manag. 2019, 237, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Zhang, T.; Wang, X.; Feng, Y.; Ren, G.; Yang, G. Process performance and methane production optimizing of anaerobic co-digestion of swine manure and corn straw. Sci. Rep. 2017, 7, 9379. [Google Scholar] [CrossRef] [Green Version]
- Rocchi, L.; Paolotti, L.; Cortina, C.; Fagioli, F.F.; Boggia, A. Measuring circularity: An application of modified Material Circularity Indicator to agricultural systems. Agric. Food Econ. 2021, 9, 9. [Google Scholar] [CrossRef]
- Gallegos, D.; Wedwitschka, H.; Moeller, L.; Zehnsdorf, A.; Stinner, W. Effect of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw. Bioresour. Technol. 2017, 245, 216–224. [Google Scholar] [CrossRef]
- Akbar, S.; Ahmed, S.; Khan, S.; Badshah, M. Anaerobic Digestate: A Sustainable Source of Bio-fertilizer. In Sustainable Intensification for Agroecosystem Services and Management; Jhariya, M.K., Banerjee, A., Meena, R.S., Kumar, S., Raj, A., Eds.; Springer: Singapore, 2021; pp. 493–542. [Google Scholar]
Substrates | ||||
---|---|---|---|---|
Parameters | CTL | A:50 | B:150 | C:500 |
TS (%FM) | 14.06 ± 0.23 | 15.82 ± 0.11 | 14.79 ± 0.09 | 14.73 ± 0.23 |
VS (%TS) | 79.08 ± 0.34 | 79.99 ± 0.21 | 79.03 ± 0.22 | 77.84 ± 0.14 |
Acetic acid (g/L) | 3.2 ± 0.02 | n.d. | n.d. | n.d. |
Lactic acid (g/L) | 7.03 ± 0.03 | n.d. | n.d. | n.d. |
Butyric acid (g/L) | <0.01 | n.d. | n.d. | n.d. |
NH4N (g/L) | 0.004 | n.d. | n.d. | n.d. |
Hemicellulose (%TS) | 10.78 ± 0.21 | n.d. | n.d. | n.d. |
Cellulose (%TS) | 14.37 ± 0.33 | n.d. | n.d. | n.d. |
Lignin (%TS) | 5.36 ± 0.06 | n.d. | n.d. | n.d. |
Crude protein (%TS) | 17.54 ± 0.01 | n.d. | n.d. | n.d. |
Crude fibre (%TS) | 11.37 ± 0.07 | n.d. | n.d. | n.d. |
WSC (g/l) | 75.36 ± 0.13 | n.d. | n.d. | n.d. |
Carbon (%TS) | 37.5 ± 0.31 | n.d. | n.d. | n.d. |
Nitrogen (%TS) | 2.93 ± 0.03 | n.d. | n.d. | n.d. |
Carbon/nitrogen | 12.80 ± 0.22 | n.d. | n.d. | n.d. |
Ash (%TS) | 20.92 ± 0.66 | 20.01 ± 0.29 | 20.97 ± 0.38 | 22.16 ± 0.35 |
pH | 4.98 ± 0.02 | n.d. | n.d. | n.d. |
Item | Silage | Storage Period (Days) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 370 | S | I | S × I | |||
TS | CTL | 14.06 aA | 13.51 aAB | 13.64 aABC | 13.56 aABC | 13.12 aBC | 12.98 aC | 0.79 | 4.66 × 10−13 | 8.59 × 10−10 | 0.0343 |
A50:1 | 15.82 bA | 15.61 bAB | 15.19 bAB | 14.92 bB | 13.96 bC | 13.80 bC | |||||
B150:1 | 14.79 cA | 14.58 cAB | 14.41 cBC | 14.24 cC | 13.50 abD | 13.07 aC | |||||
C500:1 | 14.73 cA | 14.52 cA | 14.16 cAB | 14.19 cAB | 13.64 abBC | 13.16 aC | |||||
VS | CTL | 79.08 aA | 78.93 aA | 78.34 acA | 77.98 aA | 76.12 aA | 77.13 aA | 1.40 | 1.93 × 10−12 | 0.6592 | 0.0696 |
A50:1 | 79.99 bA | 80.17 bA | 79.31 bA | 79.44 bA | 77.31 aB | 76.69 aB | |||||
B150:1 | 79.02 aA | 78.87 aA | 78.61 aA | 78.46 abA | 77.0 aB | 75.80 bC | |||||
C500:1 | 77.84 cA | 78.20 aA | 78.01 cA | 77.47 aAB | 76.67 aB | 74.91 cC | |||||
pH | CTL | 4.94 | 5.12 aA | 4.65 aB | 4.63 aB | 4.57 aB | 4.50 aC | 0.17 | 0.724 | 0.125 | 0.304 |
A50:1 | n.d | 4.72 bA | 4.57 bB | 4.55 aB | 4.51 bB | 4.46 aC | |||||
B150:1 | n.d | 4.81 cA | 4.61 abB | 4.63 aB | 4.56 abB | 4.47 aA | |||||
C500:1 | n.d | 4.86 dA | 4.58 bB | 4.59 aB | 4.63 aB | 4.48 aC | |||||
LA | CTL | 0.70 | 0.94 aA | 1.19 aB | 1.42 aC | 1.66 aD | 7.07 aE | 0.033 | <2 × 10−16 | 0.11145 | 0.00364 |
A50:1 | n.d | 1.07 aAB | 1.06 bB | 1.78 bC | 1.33 bA | 14.04 bD | |||||
B150:1 | n.d | 1.06 aA | 1.21 aA | 1.49 aA | 1.19 bA | 13.77 cB | |||||
C500:1 | n.d | 1.06 aA | 1.24 aAB | 1.51 aBC | 1.75 aC | 8.12 bD | |||||
AA | CTL | 0.32 | 0.36 acA | 0.30 aB | 0.38 aA | 0.36 aA | 2.86 aC | 0.012 | 2.1 × 10−10 | 2.42 × 10−5 | 1.37 × 10−6 |
A50:1 | n.d | 0.41 bA | 0.39 bA | 0.50 bB | 0.47 bB | 9.73 bC | |||||
B150:1 | n.d | 0.35 aA | 0.36 bcA | 0.44 cB | 0.39 aC | 8.33 cD | |||||
C500:1 | n.d | 0.38 cA | 0.35 cA | 0.44 cA | 0.42 cA | 6.97 dB | |||||
PA | CTL | 0.00 | 0.20 aA | 0.00 | 0.00 | 0.00 | 0.91 aB | 0.021 | 1.07 × 10−8 | 0.00447 | 5.97 × 10−8 |
A50:1 | n.d | 0.26 bA | 0.00 | 0.00 | 0.00 | 0.61 bB | |||||
B150:1 | n.d | 0.14 c | 0.00 | 0.00 | 0.00 | 0.00 | |||||
C500:1 | n.d | 0.13 c | 0.00 | 0.00 | 0.00 | 0.00 | |||||
Eth | CTL | 0.08 | 0.09 aA | 0.09 aA | 0.12 aA | 0.17 aB | 2.38 aC | 0.10 | 1.89 × 10−8 | 0.687 | 0.259 |
A50:1 | n.d | 0.08 abA | 0.08 bA | 0.12 aA | 0.56 bB | 0.06 bA | |||||
B150:1 | n.d | 0.08 bA | 0.07 bA | 0.10 bB | 0.21 aC | 0.17 bD | |||||
C500:1 | n.d | 0.08 abA | 0.09 aA | 0.11 aAB | 0.27 aB | 4.72 cC | |||||
TFP | CTL | 1.10 | 1.59 aA | 1.59 abA | 1.92 aB | 2.19 aC | 13.22 aD | 0.999 | <0.01 | <0.01 | <0.01 |
A50:1 | n.d | 1.83 bA | 1.93 aB | 2.39 bC | 2.55 aC | 24.43 bD | |||||
B150:1 | n.d | 1.63 abA | 1.64 bA | 2.02 aA | 2.15 bA | 22.28 cB | |||||
C500:1 | n.d | 1.65 abA | 1.68 bA | 2.06 aAB | 2.44 aB | 19.81 dC |
Silage | % of BMP Increase | Name of Additive | Duration of Ensiling (Days) | References |
---|---|---|---|---|
Switch grass | 13.08 | L. brevis | 30 | [7] |
Maize | Negligible | L. plantarum | 90 | [34] |
Grass | 10.34 | homo LAB | 110 | [50] |
Sorghum | 13.64 | Biochar | 90 | [39] |
Grass | 20 | L. buchneri | 90 | [51] |
Sugarcane trash | 71.1 | Mol + LAB | 70 | [52] |
Sugar beet leaves | 45 | (see M&M) | 370 | This study |
Silages | ||||
---|---|---|---|---|
Equation Parameters | Control | A50:1 | B150:1 | C500:1 |
Dual Pool Kinetic Model | ||||
G0 (mL/gVS) | 351.044 | 531.083 | 457.115 | 454.658 |
α | 0.580 | 0.851 | 0.748 | 0.681 |
k1(/day) | 0.244 | 0.359 | 0.326 | 0.319 |
k2(/day) | 0.013 | 0.049 | 0.021 | 0.032 |
R2 | 0.9889 | 0.9832 | 0.9821 | 0.9874 |
RMSE | 13.545 | 4.385 | 4.242 | 6.713 |
BIC | 159.098 | 96.102 | 94.248 | 119.953 |
AIC | 153.936 | 90.773 | 88.919 | 114.624 |
Teff | 8 | 14 | 14 | 14 |
Modified Gompertz Model | ||||
G0 (mL/gVS) | 343.564 | 484.466 | 413.286 | 403.674 |
Rmax (mL/gVS) | 74.286 | 83.273 | 79.005 | 68.277 |
λ(days) | 0.235 | 0.00 | 0.00 | 0.00 |
R2 | 0.9629 | 0.9702 | 0.9633 | 0.9652 |
RMSE | 14.332 | 33.956 | 30.304 | 29.376 |
BIC | 159.264 | 207.401 | 201.028 | 199.286 |
AIC | 155.102 | 203.404 | 197.032 | 195.289 |
Teff | 6 | 7 | 7 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Undiandeye, J.; Gallegos, D.; Lenz, J.; Nelles, M.; Stinner, W. Effect of Novel Aspergillus and Neurospora Species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves. Appl. Sci. 2022, 12, 2684. https://doi.org/10.3390/app12052684
Undiandeye J, Gallegos D, Lenz J, Nelles M, Stinner W. Effect of Novel Aspergillus and Neurospora Species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves. Applied Sciences. 2022; 12(5):2684. https://doi.org/10.3390/app12052684
Chicago/Turabian StyleUndiandeye, Jerome, Daniela Gallegos, Jürgen Lenz, Michael Nelles, and Walter Stinner. 2022. "Effect of Novel Aspergillus and Neurospora Species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves" Applied Sciences 12, no. 5: 2684. https://doi.org/10.3390/app12052684
APA StyleUndiandeye, J., Gallegos, D., Lenz, J., Nelles, M., & Stinner, W. (2022). Effect of Novel Aspergillus and Neurospora Species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves. Applied Sciences, 12(5), 2684. https://doi.org/10.3390/app12052684