Typology of Pure Deodar Forests Driven by Vegetation–Environment Relations in Manoor Valley, Northwestern Himalaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Sampling and Plant Identification
2.3. Environmental Gradients
2.4. Statistical Analyses
3. Results
3.1. Cluster Analysis (CA), Two-Way Cluster Analysis (TWCA) and TWINSPAN
3.2. Community Distribution Modeling along the Environmental Gradients
3.3. Significance Testing of Pure Deodar Forest Communities in Relation to Studied Variables
3.4. Beta Diversity (βsim and βsne)
3.5. Species Richness and Diversity Indices
3.6. Variation Partitioning Tests (Partial CCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Botta-Dukát, Z.; Kovács-Láng, E.; Rédei, T.; Kertész, M.; Garadnai, J. Statistical and biological consequences of preferential sampling in phytosociology: Theoretical considerations and a case study. Folia Geobot. 2007, 42, 141–152. [Google Scholar] [CrossRef]
- Brianskaia, E. Analysis of Phytosociological Composition and Spatial Structure of the Central Zone of Lake Baikal Eastern Coast Vegetation. Ph.D. Dissertation, Institut für Landschafts und Pflanzenökologie, Stuttgart, Germany, 2018. [Google Scholar]
- Biondi, E. Phytosociology today: Methodological and conceptual evolution. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145, 19–29. [Google Scholar] [CrossRef]
- Gairola, S.; Rawal, R.S.; Todaria, N.P. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. Afr. J. Plant Sci. 2008, 2, 42–48. [Google Scholar]
- Shaheen, H.; Ullah, Z.; Khan, S.M.; Harper, D.M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manag. 2012, 278, 138–145. [Google Scholar] [CrossRef]
- Sharma, C.M.; Ghildiyal, S.K.; Gairola, S.; Suyal, S. Vegetation structure, composition and diversity in relation to the soil characteristics of temperate mixed broad-leaved forest along an altitudinal gradient in Garhwal Himalaya. Indian J. Sci. Technol. 2009, 2, 39–45. [Google Scholar] [CrossRef]
- Gairola, S.; Sharma, C.M.; Suyal, S.; Ghildiya, S.K. Species composition and diversity in mid-altitudinal moist temperate forests of the Western Himalaya. J. For. Environ. Sci. 2011, 27, 1–15. [Google Scholar]
- Schmidt, I.; Zerbe, S.; Betzin, J.; Weckesser, M. An approach to the identification of indicators for forest biodiversity—The solling Mountains (NW Germany) as an example. Restor. Ecol. 2006, 14, 123–136. [Google Scholar] [CrossRef]
- McVicar, T.R.; Körner, C. On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia 2013, 171, 335–337. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Ru, W.; Li, B. Relationships between vegetation and climate on the Loess Plateau in China. Folia Geobot. 2006, 41, 151–163. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Zeb, A.; Abd-Allah, E.F.; Rahman, I.U.; Khan, S.M.; Ali, N.; Ijaz, F.; Anwar, Y.; Muzammil, S.; Alqarawi, A.A.; et al. Ecological assessment of plant communities along the edaphic and topographic gradients of Biha valley, District Swat, Pakistan. Appl. Ecol. Environ. Res. 2018, 16, 5611–5631. [Google Scholar] [CrossRef]
- Givnish, T.J. On the causes of gradients in tropical tree diversity. J. Ecol. 1999, 87, 193–210. [Google Scholar] [CrossRef]
- Luo, Z.; Tang, S.; Li, C.; Fang, H.; Hu, H.; Yang, J.; Ding, J.; Jiang, Z. Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS ONE 2012, 7, e35514. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liu, X.; Zhou, M.; Ai, D.; Wang, G.; Wang, Y.; Chu, C.; Lundholm, J.T. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 2015, 5, 15723. [Google Scholar] [CrossRef]
- Heywood, V.H.; Watson, R.T. Global Biodiversity Assessment; Cambridge University Press: Cambridge, UK, 1995; Volume 1140. [Google Scholar]
- McGrady-Steed, J.; Morin, P.J. Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 2000, 81, 361–373. [Google Scholar] [CrossRef]
- Currie, D.J.; Francis, A.P. Regional versus climatic effect on taxon richness in angiosperms: Reply to Qian and Ricklefs. Am. Nat. 2004, 163, 780–785. [Google Scholar] [CrossRef]
- Champion, S.H.; Seth, S.K.; Khattak, G.M. Forest types of Pakistan; Pakistan Forest Institute: Peshawar, Pakistan, 1965. [Google Scholar]
- Hussain, F.; Illahi, I. Ecology and Vegetation of Lesser Himalayan Pakistan; Jadoon Printing Press: Peshawar, Pakistan, 1991. [Google Scholar]
- Ahmed, M.; Nazim, K.; Siddiqui, M.F.; Wahab, M.; Khan, N.; Khan, M.U.; Hussain, S.S. Community description of Deodar forests from Himalayan range of Pakistan. Pakistan J. Bot. 2010, 42, 3091–3102. [Google Scholar]
- Beg, A.R. Wildlife habitats of Pakistan; Pakistan Forest Institute: Peshawar, Pakistan, 1975. [Google Scholar]
- Ahmed, M.; Shaukat, S.S.; Siddiqui, M.F. A multivariate analysis of the vegetation of Cedrus deodara forests in Hindu Kush and Himalayan ranges of Pakistan: Evaluating the structure and dynamics. Turk. J. Bot. 2011, 35, 419–438. [Google Scholar]
- Amin, A.; Ashfaque, R. Phytosiological studies of Ayub National Park, Rawalpindi. Pakistan J. For. 1982, 32, 130–135. [Google Scholar]
- Nazir, A.; Malik, R.N.; Ajaib, M. Phytosociological Studies of the vegetation of Sarsawa Hills District Kotli, Azad Jammu & Kashmir. Biologia 2012, 58, 123–133. [Google Scholar]
- Peer, T.; Gruber, J.P.; Millinger, A.; Hussain, F. Phytosociology, structure and diversity of the steppe vegetation in the mountains of Northern Pakistan. Phytocoenologia 2007, 37, 1–65. [Google Scholar] [CrossRef]
- Rahman, I.U.; Hart, R.; Afzal, A.; Iqbal, Z.; Abdallah, E.F.; Alqarawi, A.A.; Ijaz, F.; Ali, N.; Kausar, R.; Muzammil, S.; et al. Phenological plasticity in Berberis lycium Royle along temporal and altitudinal gradients. Appl. Ecol. Environ. Res. 2019, 17, 331–341. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Abd_Allah, E.F.; Alqarawi, A.A.; Calixto, E.S.; Ali, N.; Ijaz, F.; Kausar, R.; Alsubeie, M.S.; et al. Role of multivariate approaches in floristic diversity of Manoor valley (Himalayan region) Pakistan. Appl. Ecol. Environ. Res. 2019, 17, 1475–1498. [Google Scholar] [CrossRef]
- Rahman, I.U.; Hart, R.; Afzal, A.; Iqbal, Z.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A.; Ijaz, F.; Ali, N.; Calixto, E.S. Ecophysiological plasticity and cold stress adaptation in Himalayan alpine herbs: Bistorta affnis and Sibbaldia procumbens. Plants 2019, 8, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hart, R.; Abd_Allah, E.F.; Alqarawi, A.A.; Alsubeie, M.S.; Calixto, E.S.; Ijaz, F.; Ali, N.; et al. Response of plant physiological attributes to altitudinal gradient: Plant adaptation to temperature variation in the Himalayan region. Sci. Total Environ. 2020, 706, 135714. [Google Scholar] [CrossRef]
- Khan, S.M. Plant Communities and Vegetation Ecosystem Services in the Naran Valley, Western Himalaya. Ph.D. Dissertation, University of Leicester, Leicester, UK, 2012. [Google Scholar]
- Ali, S.I.; Qaiser, M. A phytogeographical analysis of the phanerogams of Pakistan and Kashmir. Proc. R. Soc. Edinburgh Sect. B Biol. Sci. 1986, 89, 89–101. [Google Scholar] [CrossRef]
- Takhtajan, A.; Crovello, T.J.; Cronquist, A. Floristic Regions of the World; University of California Press: Berkeley, CA, USA, 1986; Volume 544. [Google Scholar]
- Mustafa, G. Mansehra—An introduction. Science-Religion Dialogue Spring. 2003. Available online: https://www.hssrd.org/journal/spring2003/mansehra.html (accessed on 27 October 2021).
- Haq, F.; Ahmad, H.; Iqbal, Z.; Alam, M.; Aksoy, A. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 2017, 80, 232–241. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Bussmann, R.W.; Alsamadany, H.; Calixto, E.S.; Shah, G.M.; Kausar, R.; Shah, M.; Ali, N.; et al. Ecological gradients hosting plant communities in Himalayan subalpine pastures: Application of multivariate approaches to identify indicator species. Ecol. Inform. 2020, 60, 101162. [Google Scholar] [CrossRef]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Introduction to Distance Sampling: Estimating Abundance of Biological Populations; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Advanced Distance Sampling; Oxford University Press: Oxford, UK, 2004; Volume 2. [Google Scholar]
- Buckland, S.T.; Newman, K.B.; Fernández, C.; Thomas, L.; Harwood, J. Embedding population dynamics models in inference. Stat. Sci. 2007, 22, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Burnham, K.P.; Laake, J.L. Distance Sampling: Estimating Abundance of Biological Populations; Chapman &Hall: London, UK, 1993. [Google Scholar]
- Le Moullec, M.; Pedersen, Å.Ø.; Yoccoz, N.G.; Aanes, R.; Tufto, J.; Hansen, B.B. Ungulate population monitoring in an open tundra landscape: Distance sampling versus total counts. Wildlife Biol. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.T.; McIntosh, R. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Curtis, J.T. The Vegetation of Wisconsin: An Ordination of Plant Communities; University of Wisconsin Press: Madison, WI, USA, 1959; ISBN 0299019438. [Google Scholar]
- Jayasuriya, A.H.M.; Pemadasa, M.A. Factors affecting the distribution of tree species in a dry zone montane forest in Sri Lanka. J. Ecol. 1983, 571–583. [Google Scholar] [CrossRef]
- Son, H.-J.; Park, S.-H.; Lee, D.-H.; Song, J.-H.; Park, H.-W.; Park, W.-G. Growing environment characteristics and vegetation structure of Vaccinium Oldhamii Miq. native habitats in Korea. Forest Sci. Technol. 2019, 15, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Li, H.; Li, W.; Gan, X.; Zhang, X.; Fan, Z. Structural characteristics and niches of dominant tree populations in Tetracentron sinense communities: Implications for conservation. Bot. Sci. 2018, 96, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Pan, Y.; Gao, C.; Jiang, M.; Lu, X.; Xu, Y.J. Response of plant height, species richness and aboveground biomass to flooding gradient along vegetation zones in floodplain wetlands, Northeast China. PLoS ONE 2016, 11, e0153972. [Google Scholar] [CrossRef]
- Song, J.H.; Cheong, E.J.; Kim, H.; Kim, M.S.; Kim, S.H. Variation of morphological characteristics and anthocyanin contents from fruit of Vaccinium oldhamii in Korea. J. Korean Soc. For. Sci. 2015, 104, 193–197. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Abd_Allah, E.F.; Iqbal, Z.; Alqarawi, A.A.; Hashem, A.; Calixto, E.S.; Ali, N.; Asmarayani, R. Composition of plant communities driven by environmental gradients in alpine pastures and cold desert of northwestern Himalaya, Pakistan. Pakistan J. Bot. 2021, 53, 655–664. [Google Scholar] [CrossRef]
- Ijaz, F. Biodiversity and traditional uses of plants of Sarban Hills, Abbottabad. M.Phil Dissertation, Hazara University, Manehra, Pakistan, 2014. [Google Scholar]
- Ijaz, F.; Rahman, I.; Iqbal, Z.; Alam, J.; Ali, N.; Khan, S. Ethno-ecology of the healing forests of Sarban Hills, Abbottabad, Pakistan: An economic and medicinal appraisal. In Plant and Human Health; Ozturk, M., Hakeem, K., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018; pp. 675–706. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Ijaz, F.; Ali, N.; Bussmann, R.W. Traditional and ethnomedicinal dermatology practices in Pakistan. Clin. Dermatol. 2018, 36, 310–319. [Google Scholar] [CrossRef]
- Rahman, I.U.; Ijaz, F.; Afzal, A.; Iqbal, Z.; Ali, N.; Khan, S.M. Contributions to the phytotherapies of digestive disorders: Traditional knowledge and cultural drivers of Manoor Valley, Northern Pakistan. J. Ethnopharmacol. 2016, 192, 30–52. [Google Scholar] [CrossRef]
- Rahman, I.U.; Ijaz, F.; Iqbal, Z.; Afzal, A.; Ali, N.; Afzal, M.; Khan, M.A.; Muhammad, S.; Qadir, G.; Asif, M. A novel survey of the ethno medicinal knowledge of dental problems in Manoor Valley (Northern Himalaya), Pakistan. J. Ethnopharmacol. 2016, 194, 877–894. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hart, R.; Abd_Allah, E.F.; Hashem, A.; Alsayed, M.F.; Ijaz, F.; Shah, M.; Bussmann, R.W.; et al. Herbal teas and drinks: Folk medicine of the Manoor valley, Lesser Himalaya, Pakistan. Plants 2019, 8, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, K.U.; Shah, M.; Ahmad, H.; Ashraf, M.; Rahman, I.U.; Iqbal, Z.; Khan, S.M.; Majid, A. Investigation of traditional veterinary phytomedicines used in Deosai Plateau, Pakistan. Glob. Vet 2015, 15, 381–388. [Google Scholar]
- Nasir, E.; Ali, S.I. Flora West of Pakistan; University of Karachi, Karachi and National Herbarium: Islamabad, Pakistan, 1971. [Google Scholar]
- Ali, S.I.; Nasir, Y.J. Flora of Pakistan; Department of Botany, University of Karachi, Karachi and National Herbarium: Islamabad, Pakistan, 1989. [Google Scholar]
- Ali, S.I.; Qaiser, M. Flora of Pakistan; Department of Botany, University of Karachi: Karachi, Pakistan, 1995. [Google Scholar]
- Rahman, I.U.; Ijaz, F.; Afzal, A.; Iqbal, Z. Effect of foliar application of plant mineral nutrients on the growth and yield attributes of chickpea (Cicer arietinum L.) Under nutrient deficient soil conditions. Bangladesh J. Bot. 2017, 46, 111–118. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Ijaz, F.; Khan, S.M.; Khan, S.A.; Shah, A.H.; Khan, K.; Ali, N. Influence of different nutrients application in nutrient deficient soil on growth and yield of onion. Bangladesh J. Bot. 2015, 44, 613–619. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Ostwald, M. Carbon Inventory Methods: Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mc Lean, E.O. Soil pH and Lime requirement. In Methods of Soil Analysis Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc./Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 199–223. [Google Scholar]
- Wilson, M.J.; Bayley, S.E. Use of single versus multiple biotic communities as indicators of biological integrity in northern prairie wetlands. Ecol. Indic. 2012, 20, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods ofSoil Analysis. Part 3. Chemical Method; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E., Eds.; Soil Science Society of America/American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Soltanpour, P.N. Determination of nutrient availability and elemental toxicity by AB-DTPA soil test and ICPS. In Advances in Soil Science; Springer: New York, NY, USA, 1991; pp. 165–190. [Google Scholar]
- Smilauer, P.; Jan, L. Multivariate Analysis of Ecological Data Using CANOCO, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clément, J.C.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C.; et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 2017, 542, 91–95. [Google Scholar] [CrossRef] [Green Version]
- McCune, B.; Mefford, M. PC-ORD. Multivariate Analysis of Ecological Data. Version 6; MjM Software Design: Gleneden Beach, OR, USA, 2011. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bano, S.; Khan, S.M.; Alam, J.; Alqarawi, A.A.; Abd_Allah, E.F.; Ahmad, Z.; Rahman, I.U.; Ahmad, H.; Aldubise, A.; Hashem, A. Eco-Floristic studies of native plants of the Beer Hills along the Indus River in the districts Haripur and Abbottabad, Pakistan. Saudi J. Biol. Sci. 2018, 25, 801–810. [Google Scholar] [CrossRef]
- Hill, M.O. TWINSPAN: A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-Way Table by Classification of the Individuals and Attributes; Cornell University: Ithaca, NY, USA, 1979. [Google Scholar]
- Terzi, M.; Bogdanović, S.; D’Amico, F.S.; Jasprica, N. Rare plant communities of the Vis Archipelago (Croatia). Bot. Lett. 2019, 167, 241–254. [Google Scholar] [CrossRef]
- Smith, M.R. Create Ternary Plots in R. Available online: https://cran.r-project.org/web/packages/Ternary/vignettes/Ternary.html (accessed on 27 October 2021).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Baselga, A.; Orme, C.D.L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Legendre, P. Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 2008, 1, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Semwal, D.P.; Uniyal, P.L.; Bhatt, A.B. Structure, composition and dominance–diversity relations in three forest types of a part of Kedarnath Wildlife Sanctuary, Central Himalaya, India. Not. Sci. Biol. 2010, 2, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Dar, J.A.; Sundarapandian, S. Patterns of plant diversity in seven temperate forest types of Western Himalaya, India. J. Asia-Pacif. Biodivers. 2016, 9, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Shank, R.E.; Noorie, E.N. Microclimate vegetation in a small valley in eastern Tennessee. Ecology 1950, 11, 531–539. [Google Scholar]
- Adair, K.L.; Lindgreen, S.; Poole, A.M.; Young, L.M.; Bernard-Verdier, M.; Wardle, D.A.; Tylianakis, J.M. Above and belowground community strategies respond to different global change drivers. Sci. Rep. 2019, 9, 2540. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hashem, A.; Al-Arjani, A.-B.F.; Alqarawi, A.A.; Abd_Allah, E.F.; Abdalla, M.; Calixto, E.S.; Sakhi, S. Species Distribution Pattern and Their Contribution in Plant Community Assembly in Response to Ecological Gradients of the Ecotonal Zone in the Himalayan Region. Plants 2021, 10, 2372. [Google Scholar] [CrossRef]
- Conti, L.; de Bello, F.; Lepš, J.; Acosta, A.T.R.; Carboni, M. Environmental gradients and micro-heterogeneity shape fine-scale plant community assembly on coastal dunes. J. Veg. Sci. 2017, 28, 762–773. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 2006, 87, S3–S13. [Google Scholar] [CrossRef]
- Klanderud, K.; Birks, H.J.B. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 2003, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Odland, A.; Birks, H.J.B. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography 1999, 22, 548–566. [Google Scholar] [CrossRef]
- Weckström, J.; Korhola, A. Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. J. Biogeogr. 2001, 28, 31–45. [Google Scholar] [CrossRef]
- Kunwar, R.M.; Sharma, S.P. Quantitative analysis of tree species in two community forests of Dolpa district, mid-west Nepal. Himal. J. Sci. 2004, 2, 23–28. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Alzain, M.N.; Al-Arjani, A.-B.F.; Alqarawi, A.A.; Abd_Allah, E.F.; Ali, N.; Sakhi, S.; Khan, M.A.; et al. Classification and Characterization of the Manoor Valley’s (Lesser Himalaya) Vegetation from the Subtropical-Temperate Ecotonal Forests to the Alpine Pastures along Ecological Variables. Plants 2022, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Oduor, C.; Karanja, N.; Onwonga, R.; Mureithi, S.; Pelster, D.; Nyberg, G. Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecol. 2018, 18, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plant Species | Plant Communities | ||
---|---|---|---|
Cedrus–Isodon–Cynodon | Cedrus–Cynodon–Dryopteris | Sambucus–Cedrus–Desmodium | |
Abies pindrow (Royle ex D. Don) Royle | 0.00 | 0.00 | 1.10 |
Achyranthes aspera L. | 0.34 | 1.09 | 0.00 |
Achyranthes bidentata Blume | 0.21 | 0.20 | 0.00 |
Adiantum capillus-veneris L. | 3.67 | 3.86 | 1.45 |
Adiantum indicum J. Ghatak | 0.00 | 0.00 | 0.29 |
Adiantum venustum D. Don | 0.00 | 0.00 | 0.35 |
Aesculus indica (Wall. ex Camb.) Hook. | 0.00 | 0.00 | 0.26 |
Ailanthus altissima (Mill.) Swingle | 0.00 | 3.62 | 0.80 |
Ajuga integrifolia Buch.–Ham. | 1.25 | 2.58 | 0.00 |
Amaranthus viridis L. | 0.00 | 1.37 | 0.00 |
Anagallis arvensis L. | 1.77 | 2.55 | 0.00 |
Arisaema flavum (Forssk.) Schott | 3.88 | 1.07 | 0.00 |
Artemisia absinthium L. | 0.00 | 5.04 | 1.39 |
Bergenia ciliata (Haw.) Sternb. | 0.00 | 0.00 | 0.56 |
Berberis lycium Royle | 5.03 | 0.00 | 0.00 |
Berberis parkeriana C.K. Schneid. | 0.00 | 0.00 | 0.61 |
Berberis pachyacantha Bien. ex Koehne | 0.00 | 0.00 | 0.20 |
Bistorta amplexicaulis (D. Don) Greene | 0.00 | 0.00 | 1.82 |
Bromus diandrus Roth. | 0.00 | 0.00 | 0.53 |
Bromus secalinus L. | 0.00 | 0.00 | 1.56 |
Bromus tectorum L. | 0.00 | 0.00 | 0.68 |
Bupleurum nigrescens E. Nasir | 2.96 | 0.00 | 1.55 |
Calamintha umbrosa (M. Bieb.) Hedge | 0.00 | 0.00 | 1.42 |
Cannabis sativa L. | 0.00 | 0.95 | 0.00 |
Capsella bursa-pastoris (L.) Medik. | 0.00 | 3.76 | 0.00 |
Cedrus deodara(Roxb. ex Lamb.) G. Don | 13.74 | 10.79 | 5.05 |
Cichorium intybus L. | 0.00 | 0.46 | 0.00 |
Cirsium arvense (L.) Scop. | 2.00 | 3.18 | 0.21 |
Clematis grata Wall. | 2.46 | 3.97 | 0.64 |
Clinopodium vulgare L. | 0.00 | 2.53 | 0.51 |
Commelina benghalensis L. | 0.00 | 0.00 | 0.26 |
Convolvulus arvensis L. | 4.41 | 2.26 | 0.00 |
Conyza japonica (Thunb.) Less. ex Less. | 0.00 | 0.39 | 0.23 |
Corydalis carinata Lidén and Z.Y.Su | 0.00 | 0.00 | 0.03 |
Corydalis virginea Lidén and Z.Y.Su | 0.00 | 0.00 | 0.05 |
Cotoneaster acuminatus Wall. ex Lindl. | 0.00 | 0.00 | 0.16 |
Cotoneaster microphyllus Wall. ex Lindl | 3.71 | 0.00 | 0.00 |
Crotalaria sp. | 0.00 | 0.67 | 0.22 |
Cuscuta reflexa Roxb. | 1.63 | 0.00 | 0.00 |
Cynodon dactylon(L.) Pers. | 10.47 | 10.40 | 1.83 |
Cynoglossum glochidiatum Wall. ex Benth. | 1.19 | 1.90 | 0.00 |
Cyperus odoratus L. | 0.00 | 1.58 | 0.78 |
Cyperus rotundus L. | 5.48 | 3.26 | 1.66 |
Dactylis glomerata L. | 0.00 | 0.00 | 3.30 |
Desmodium elegansDC. | 0.00 | 0.00 | 4.10 |
Dicliptera bupleuroides Nees | 0.00 | 0.49 | 0.10 |
Dioscorea deltoidea Wall. ex Griseb. | 0.00 | 0.00 | 0.04 |
Diospyros lotus L. | 0.00 | 0.83 | 0.13 |
Dipsacus inermis Wall. in Roxb. | 0.00 | 0.00 | 0.06 |
Dodonaea viscosa (L.) Jacq. | 0.30 | 0.54 | 0.00 |
Dryopteris wallichiana(Spreng.) Hyl. | 5.88 | 5.48 | 3.26 |
Duchesnea indica (Andx) Fake. | 4.07 | 1.06 | 0.61 |
Erigeron canadensis L. | 0.00 | 0.00 | 0.50 |
Euphrasia himalayica Wetts. | 0.00 | 0.00 | 1.50 |
Euphorbia hirta L. | 0.00 | 1.72 | 0.00 |
Euphorbia prostrata Ait. | 0.00 | 0.70 | 0.00 |
Filipendula vestita (Wall. ex G. Don.) Maxim. | 0.00 | 0.00 | 0.70 |
Foeniculum vulgare Mill. | 0.00 | 0.00 | 2.38 |
Fragaria nubicola (Hook. f.) Lindl. ex Lacaita | 6.41 | 2.64 | 2.45 |
Fumaria indica (Hausskn) Pugsley | 1.29 | 0.00 | 0.00 |
Galium aparine L. | 0.00 | 0.00 | 0.48 |
Geranium nepalense Sweet. | 0.00 | 0.41 | 0.49 |
Geranium wallichianum D. Don ex Sweet | 4.00 | 1.20 | 1.19 |
Grewia optiva J.R.Drumm. ex Burret | 0.00 | 0.00 | 0.16 |
Hedera nepalensis K. Koch | 4.25 | 1.96 | 0.00 |
Heracleum candicans Wall. ex DC. | 0.00 | 0.00 | 3.29 |
Hyoscyamus niger L. | 0.00 | 0.00 | 0.47 |
Impatiens bicolor Royle. | 5.64 | 2.41 | 0.94 |
Indigofera hebepetala Baker | 0.00 | 0.00 | 0.91 |
Indigofera heterantha Brandis | 0.00 | 3.68 | 1.52 |
Ipomoea nil (L.) Roth | 0.00 | 1.67 | 0.64 |
Isodon rugosus(Wall. ex Benth.) Codd | 11.50 | 3.28 | 0.24 |
Juglans regia L. | 0.00 | 1.17 | 0.08 |
Justicia adhatoda L. | 0.00 | 0.00 | 0.29 |
Lamium amplexicaule L. | 0.00 | 0.98 | 0.00 |
Lathyrus aphaca L. | 0.00 | 0.00 | 0.53 |
Launaea procumbens (Roxb.) Ramayya and Rajagopal | 1.11 | 1.49 | 0.08 |
Leptodermis virgata Edgew. ex Hook.F. | 3.16 | 2.99 | 0.00 |
Lindelofia sp. | 0.74 | 0.46 | 0.02 |
Malvastrum coromandelianum(L.) Garcke | 0.28 | 0.25 | 0.09 |
Malva parviflora L | 0.00 | 2.46 | 0.00 |
Malva neglecta Wallr. | 0.00 | 2.86 | 0.00 |
Medicago sativa L. | 4.95 | 3.83 | 0.55 |
Micromeria biflora (Ham.) Bth. | 0.00 | 2.64 | 0.00 |
Nepeta graciliflora Benth. | 0.00 | 0.00 | 0.46 |
Nepeta laevigata (D. Don) Hand.–Mazz | 0.00 | 0.00 | 0.97 |
Oenothera rosea L. Her ex Aiton | 0.00 | 0.99 | 0.30 |
Olea ferruginea Wall. ex Aitch. | 0.00 | 0.00 | 0.12 |
Onopordum acanthium L. | 0.00 | 0.00 | 2.86 |
Origanum majorana L. | 0.00 | 0.00 | 0.16 |
Origanum vulgare L. | 0.00 | 0.00 | 1.54 |
Oxalis corniculata L. | 4.11 | 5.38 | 0.81 |
Parthenium hysterophorus L. | 0.00 | 0.91 | 0.00 |
Parrotiopsis jacquemontiana (Decne.) Rehder | 6.41 | 0.81 | 2.37 |
Paspalum dilatatun Poir. | 0.00 | 0.00 | 0.28 |
Pennisetum orientale Rich. | 0.00 | 0.00 | 3.04 |
Periploca aphylla Decne. | 0.00 | 0.00 | 0.20 |
Persicaria capitata (Buch.–Ham. ex D.Don) H.Gross | 2.62 | 2.86 | 0.00 |
Phragmites altissimus (Benth.) Mabille | 0.00 | 0.00 | 1.88 |
Phytolacca americana L. | 0.00 | 0.00 | 0.08 |
Phytolacca latbenia (Moq.) H. Walter | 0.00 | 0.00 | 0.04 |
Pimpinella stewartii (Dunn) Nasir | 0.00 | 2.10 | 1.53 |
Pinus roxburghii Sarg | 0.43 | 0.10 | 0.00 |
Pinus wallichiana A.B. Jacks | 0.00 | 0.62 | 0.77 |
Piptatherum aequiglume (Duthie ex Hook.f.) Roshev. | 0.00 | 0.00 | 0.68 |
Plantago major L. | 0.00 | 0.00 | 0.33 |
Pleurospermum stellatum (D. Don) Benth. ex C.B. Clarke | 0.00 | 0.00 | 0.04 |
Pleurospermum stylosum C.B. Clarke | 0.00 | 0.00 | 0.04 |
Poa infirma Kunth | 0.00 | 0.00 | 1.72 |
Polygonum plebeium R.Br. | 0.00 | 0.00 | 0.91 |
Polygonatum sp. | 0.00 | 0.00 | 0.03 |
Polygonatum verticillatum (L.) Allioni | 0.00 | 0.00 | 0.25 |
Populus alba L. | 0.00 | 0.00 | 1.80 |
Populus ciliata Wall. ex Royle | 0.00 | 0.00 | 0.33 |
Populus nigra L. | 0.00 | 0.00 | 0.16 |
Portulaca oleracea L. | 0.00 | 0.00 | 0.28 |
Potentilla nepalensis Hook. | 0.00 | 0.00 | 0.36 |
Prunella vulgaris L. | 0.00 | 0.00 | 1.62 |
Pteridium aquilinum (L.) Kuhn | 0.00 | 0.46 | 0.00 |
Pteracanthus urticifolius (Wall. ex Kuntze) Bremek. | 0.00 | 0.00 | 0.07 |
Ranunculus muricatus L. | 0.00 | 0.00 | 0.44 |
Reinwardtia trigyna Planch. | 0.00 | 0.00 | 0.26 |
Rhamnus purpurea Edgew. | 0.00 | 0.00 | 0.14 |
Rhynchosia pseudo-cajan Cambess. | 0.00 | 0.00 | 0.13 |
Robinia pseudo-accacia L. | 0.00 | 0.00 | 0.22 |
Rosa brunonii Lindl. | 0.00 | 0.00 | 0.80 |
Rubus fruticosus agg. | 0.00 | 0.00 | 1.04 |
Rubus sanctus Schreber | 0.00 | 0.00 | 0.34 |
Rydingia limbata (Benth.) Scheen and V.A. Albert | 0.00 | 0.00 | 0.26 |
Saccharum spontaneum L. | 0.00 | 0.00 | 0.06 |
Salix alba L. | 0.00 | 0.00 | 0.25 |
Salix denticulata subsp. hazarica (R. Parker) Ali | 0.00 | 0.00 | 0.08 |
Salvia lanata Roxb. | 0.00 | 0.79 | 0.39 |
Salvia moorcroftiana Wall. ex Benth. | 0.94 | 0.00 | 0.00 |
Salvia nubicola Wall. ex Sweet | 0.00 | 0.00 | 0.61 |
Salix tetrasperma Roxb | 0.00 | 0.00 | 0.03 |
Sambucus wightianaWall. ex Wight and Arn | 0.00 | 0.00 | 5.25 |
Saussurea sp. | 0.00 | 0.35 | 0.00 |
Seseli libanotis (L.) W.D.J. Koch | 0.00 | 0.00 | 0.04 |
Sida cordata (Burm.f.) Borss | 0.00 | 0.00 | 0.03 |
Silene conoidea L. | 0.00 | 0.00 | 0.42 |
Silybum marianum (L.) Gaertn. | 0.00 | 0.61 | 0.00 |
Silene vulgaris (Moench) Garcke | 0.00 | 0.00 | 0.62 |
Smilax glaucophylla Koltzsch | 0.00 | 0.00 | 0.20 |
Sonchus asper (L.) Hill | 0.00 | 0.95 | 0.49 |
Sorghum halepense (L.) Pers. | 3.37 | 1.91 | 1.17 |
Sorbaria tomentosa (Lindl.) Rehder | 0.00 | 1.00 | 3.62 |
Spiraea affinis R.Parker | 0.00 | 0.00 | 0.23 |
Spiraea vaccinifolia D. Don | 0.00 | 0.00 | 0.02 |
Sporobolus diandrus (Retz.) P.Beauv. | 0.00 | 0.00 | 0.70 |
Stellaria media (L.) Vill. | 0.00 | 0.00 | 0.12 |
Tagetes minuta L. | 0.00 | 4.33 | 0.77 |
Taraxacum officinale aggr. F.H. Wigg. | 0.00 | 1.52 | 0.00 |
Thalictrum pedunculatum Edgew. | 0.00 | 0.00 | 0.03 |
Torilis japonica (Houtt.) DC. | 0.00 | 0.00 | 0.04 |
Trachyspermum amii (L.) Sprague | 0.00 | 0.00 | 0.01 |
Trifolium repens L. | 3.26 | 3.60 | 0.00 |
Vicia sativa L. | 0.00 | 0.00 | 0.04 |
Vincetoxicum petrense (Hemsl. and Lace) Rech. f. | 0.00 | 0.00 | 0.04 |
Viola odorata L. | 0.00 | 0.00 | 0.29 |
Viola serpens Wall. Ex Ging | 0.00 | 0.00 | 0.36 |
Vitex negundo L. | 0.00 | 0.00 | 0.19 |
Stands | Altitude | Latitude | Longitude | SA | Temp | H | HI | WS | DP | WB | BP | pH | EC | OM | CaCO3 | K | P | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 1807.9 | 34.69282 | 73.58045 | 45 | 23.7 | 68.9 | 24.4 | 1 | 17.6 | 19.4 | 826.1 | 6.4 | 0.56 | 1.1 | 9.2 | 210 | 17 | 21.4 | 54 | 24.6 |
S2 | 1769.8 | 34.69304 | 73.58070 | 38 | 23.3 | 72.5 | 25 | 1 | 19.1 | 20.2 | 877.5 | 6 | 1.54 | 1.07 | 7.7 | 216 | 13 | 45.8 | 28 | 26.2 |
S3 | 1792.4 | 34.69279 | 73.58091 | 34 | 27.1 | 55.2 | 29 | 1 | 17.3 | 19.7 | 815.1 | 6.1 | 1.5 | 0.59 | 9.6 | 210 | 13 | 15.6 | 58.2 | 26.2 |
S4 | 1869.5 | 34.69168 | 73.58167 | 40 | 26.4 | 57 | 28.8 | 2 | 17 | 19.5 | 822.1 | 6.7 | 2.24 | 0.7 | 3.4 | 215 | 6.1 | 46 | 31 | 23 |
S5 | 1580.8 | 34.69881 | 73.60361 | 35 | 26.9 | 60.2 | 28.4 | 1 | 19.4 | 21.3 | 836.7 | 6.2 | 0.73 | 1.07 | 9.7 | 235 | 16 | 26.4 | 49.2 | 24.4 |
S6 | 1587.5 | 34.69675 | 73.57915 | 24 | 27.8 | 56.6 | 28.8 | 1 | 18.5 | 21 | 836 | 6.1 | 1.13 | 0.6 | 9.5 | 200 | 11 | 15.8 | 58 | 26.2 |
S7 | 1598.2 | 34.69641 | 73.58026 | 28 | 28.4 | 53.9 | 29.2 | 0 | 18.1 | 20.8 | 834.9 | 6.5 | 1.92 | 1.15 | 7.4 | 205 | 11 | 35.8 | 50 | 14.2 |
S8 | 1872.9 | 34.68000 | 73.58000 | 35 | 25 | 56.2 | 26.3 | 1 | 15.5 | 18.4 | 807.1 | 6.7 | 1.49 | 0.63 | 2.8 | 210 | 10 | 55 | 26 | 19 |
S9 | 1864.6 | 34.68760 | 73.58897 | 50 | 25.8 | 53.6 | 26.5 | 0 | 17.2 | 19.7 | 807.7 | 5.9 | 1.6 | 1.25 | 5.9 | 215 | 12 | 29.4 | 56 | 14.6 |
S10 | 1968.3 | 34.68724 | 73.58803 | 36 | 25.4 | 60.3 | 26.8 | 0 | 18.9 | 20.7 | 797.6 | 6.7 | 0.93 | 1.08 | 2.8 | 225 | 11 | 42 | 32 | 26 |
S11 | 1965.5 | 34.68650 | 73.58700 | 40 | 20.9 | 74.9 | 22.1 | 1.5 | 16.8 | 18.2 | 797 | 6.4 | 1.73 | 0.85 | 5.7 | 205 | 15 | 43 | 35 | 22 |
S12 | 1982.0 | 34.68704 | 73.58770 | 45 | 21.8 | 69.2 | 22.4 | 0 | 16.6 | 18.2 | 796.3 | 7.3 | 0.84 | 0.64 | 6.6 | 215 | 7.7 | 29.6 | 44 | 26.4 |
S13 | 2373.8 | 34.69443 | 73.62392 | 85 | 26.3 | 53.5 | 26.9 | 0 | 16.2 | 18.6 | 758.5 | 6.9 | 2.31 | 0.65 | 2.7 | 215 | 8 | 29 | 57 | 14 |
S14 | 2352.1 | 34.69476 | 73.62369 | 60 | 27.3 | 59.1 | 28.4 | 0 | 18.2 | 20.6 | 760.6 | 5.7 | 1.8 | 1.19 | 7.5 | 211 | 16 | 48 | 30 | 22 |
S15 | 2285.7 | 34.69551 | 73.62269 | 40 | 23.3 | 61.3 | 23.6 | 1.5 | 16 | 18.5 | 766 | 5.6 | 5.09 | 1.18 | 7.4 | 213 | 17 | 40 | 36 | 24 |
S16 | 2080.2 | 34.69696 | 73.61943 | 85 | 25.9 | 59.5 | 26.2 | 1 | 17.2 | 19.4 | 786.6 | 5.4 | 1.43 | 1.1 | 11.8 | 225 | 11 | 42 | 32 | 26 |
S17 | 2013.7 | 34.69766 | 73.61852 | 75 | 26.9 | 57.3 | 27.9 | 2 | 17.6 | 19.9 | 793.2 | 5.6 | 1.95 | 1.2 | 7.5 | 212 | 13 | 46 | 29.6 | 24.4 |
S18 | 1986.3 | 34.69753 | 73.61784 | 25 | 26.3 | 54.1 | 30.7 | 1.5 | 18.5 | 21.1 | 795.7 | 6.2 | 2.48 | 1.2 | 8 | 206 | 15 | 48 | 31 | 21 |
S19 | 1949.4 | 34.69768 | 73.61755 | 85 | 25.6 | 53.9 | 25.6 | 3 | 16.1 | 18.8 | 799.3 | 5.7 | 3.71 | 1.2 | 10.3 | 228 | 14 | 33 | 48 | 19 |
S20 | 1943.6 | 34.69779 | 73.61757 | 75 | 26.4 | 57 | 26.6 | 2 | 16.9 | 19.9 | 800 | 5.6 | 2.39 | 1.1 | 11.9 | 225 | 15 | 40 | 36 | 24 |
S21 | 1936.0 | 34.69785 | 73.61739 | 65 | 25.6 | 47.9 | 26.3 | 1.5 | 13.7 | 17.4 | 800.7 | 5.5 | 9.18 | 0.6 | 13 | 216 | 11 | 41.8 | 42 | 16.2 |
S22 | 1942.4 | 34.71430 | 73.62436 | 70 | 25.5 | 49.9 | 26.2 | 2 | 15.2 | 18 | 800.2 | 6.5 | 2.02 | 0.86 | 5.5 | 215 | 16 | 44 | 36 | 20 |
S23 | 1947.6 | 34.71437 | 73.62418 | 70 | 25.4 | 52.9 | 25.4 | 1.5 | 16.2 | 18.3 | 799.5 | 5.2 | 3.99 | 1.06 | 7.4 | 210 | 5 | 47.8 | 36 | 16.2 |
Variables | df | Chi-Square | F | Pr(>F) |
---|---|---|---|---|
Altitude | 1 | 0.39074 | 30.439 | 0.001 |
Temperature | 1 | 0.16637 | 12.960 | 0.144 |
Wind speed | 1 | 0.22077 | 17.198 | 0.019 |
Barometric Pressure | 1 | 0.14212 | 11.071 | 0.342 |
Slope angle | 1 | 0.29362 | 22.874 | 0.001 |
Slope (ES) | 1 | 0.25023 | 19.493 | 0.012 |
Slope (NE) | 1 | 0.14662 | 11.422 | 0.290 |
Slope (SW) | 1 | 0.17210 | 13.407 | 0.161 |
pH | 1 | 0.10719 | 0.8350 | 0.692 |
EC | 1 | 0.13028 | 10.149 | 0.422 |
OM | 1 | 0.10794 | 0.8409 | 0.693 |
CaCO3 | 1 | 0.13288 | 10.351 | 0.377 |
K | 1 | 0.10015 | 0.7801 | 0.771 |
P | 1 | 0.13604 | 10.598 | 0.343 |
Silt | 1 | 0.12995 | 10.124 | 0.411 |
Individual Fraction | Adjusted R2 | Variation Explained (%) | % of All | df |
---|---|---|---|---|
(a) | 0.055 | 19.5 | 1.5 | 2 |
(b) | 0.091 | 32.4 | 2.6 | 3 |
(c) | −0.050 | −18.0 | −1.4 | 3 |
(d) | 0.059 | 21.1 | 1.7 | 2 |
(e) | 0.022 | 7.8 | 0.6 | 0 |
(f) | 0.045 | 16.1 | 1.3 | 0 |
(g) | 0.006 | 2.2 | 0.2 | 0 |
(h) | 0.000 | 0.1 | 0.0 | 0 |
(i) | −0.020 | −7.3 | −0.6 | 0 |
(j) | −0.009 | −3.3 | −0.3 | 0 |
(k) | 0.049 | 17.6 | 1.4 | 0 |
(l) | −0.041 | −14.8 | −1.2 | 0 |
(m) | 0.043 | 15.4 | 1.2 | 0 |
(n) | 0.039 | 14.0 | 1.1 | 0 |
(o) | −0.011 | −4.0 | −0.3 | 0 |
Total explained | 0.280 | 99.0 | 7.9 | 10 |
All variation | 3.525 | / | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, I.U.; Afzal, A.; Iqbal, Z.; Calixto, E.S.; Alkahtani, J.; Alwahibi, M.S.; Ali, N.; Kausar, R.; Khan, U.; Bussmann, R.W. Typology of Pure Deodar Forests Driven by Vegetation–Environment Relations in Manoor Valley, Northwestern Himalaya. Appl. Sci. 2022, 12, 2753. https://doi.org/10.3390/app12052753
Rahman IU, Afzal A, Iqbal Z, Calixto ES, Alkahtani J, Alwahibi MS, Ali N, Kausar R, Khan U, Bussmann RW. Typology of Pure Deodar Forests Driven by Vegetation–Environment Relations in Manoor Valley, Northwestern Himalaya. Applied Sciences. 2022; 12(5):2753. https://doi.org/10.3390/app12052753
Chicago/Turabian StyleRahman, Inayat Ur, Aftab Afzal, Zafar Iqbal, Eduardo Soares Calixto, Jawaher Alkahtani, Mona S. Alwahibi, Niaz Ali, Rukhsana Kausar, Uzma Khan, and Rainer W. Bussmann. 2022. "Typology of Pure Deodar Forests Driven by Vegetation–Environment Relations in Manoor Valley, Northwestern Himalaya" Applied Sciences 12, no. 5: 2753. https://doi.org/10.3390/app12052753
APA StyleRahman, I. U., Afzal, A., Iqbal, Z., Calixto, E. S., Alkahtani, J., Alwahibi, M. S., Ali, N., Kausar, R., Khan, U., & Bussmann, R. W. (2022). Typology of Pure Deodar Forests Driven by Vegetation–Environment Relations in Manoor Valley, Northwestern Himalaya. Applied Sciences, 12(5), 2753. https://doi.org/10.3390/app12052753