Evaluation of Hydrogen Permeation into High-Strength Steel during Corrosion in Different Marine Corrosion Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Outdoor Test Site
2.2. In Situ Hydrogen Permeation Monitoring Test
2.2.1. In Situ Hydrogen Permeation Monitoring Set-Up
2.2.2. In Situ Hydrogen Permeation Monitoring Test in the Outdoor Marine Environments
2.2.3. Measurement of Corrosion Thickness Loss
2.2.4. Analysis of Corrosion Products
2.3. Indoor Simulated Hydrogen Permeation Test
3. Results and Discussion
3.1. Hydrogen Permeation Monitoring Test in the Outdoor Marine Environments
3.1.1. Hydrogen Permeation Behavior of Steels in Different Marine Corrosion Zones
3.1.2. The Relationship between Hydrogen Permeation and Corrosion Loss of Steel
3.1.3. Corrosion Products Analysis and Its Effect on Hydrogen Permeation
3.2. Hydrogen Permeation into Steel under the Simulated Wet–Dry Cycle Condition
4. Conclusions
- (1)
- A good performance of the in situ hydrogen permeation monitoring system was present in in both the outdoor and indoor hydrogen permeation tests. Hydrogen permeation into steel during corrosion in different marine corrosion zones can be evaluated with good accuracy through the collected hydrogen permeation current data during outdoor testing.
- (2)
- The 3-month outdoor hydrogen permeation tests showed that the diffusible hydrogen content of steels in the marine atmospheric, splash, tidal and immersion zones were 3.15 × 10−3, 7.00 × 10−2, 2.06 × 10−2 and 3.33 × 10−2 wt ppm, respectively.
- (3)
- It was found that the hydrogen permeation current density is positively correlated with the corrosion rate of the steel in the marine environment. A large hydrogen permeation current of the steel exposed to the immersion zone was observed during the outdoor test, which is considered to be related to the formation of FeS in the corrosion products caused by SRB.
- (4)
- There are no obvious changes in the OCP of the steel during tidal cycles, and the change in the hydrogen permeation current is mainly controlled by the pH of electrolyte and oxygen concentration beneath the rust layer.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omura, T. Hydrogen entry and its effect on delayed fracture susceptibility of high strength steel bolts under atmospheric corrosion. ISIJ Int. 2012, 52, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Nanninga, N.E.; Levy, Y.S.; Drexler, E.S.; Condon, R.T.; Stevenson, A.E.; Slifka, A.J. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros. Sci. 2012, 59, 1–9. [Google Scholar] [CrossRef]
- Venezuela, J.; Liu, Q.; Zhang, M.; Zhou, Q.; Atrens, A. The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test. Corros. Sci. 2015, 99, 98–117. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.Q.; Akiyama, E.; Tsuzaki, K. Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel. Mater. Sci. Eng. A 2005, 398, 37–46. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Hao, W.K.; Wu, W.; Luo, H.; Li, X.G. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer. Corros. Sci. 2019, 148, 388–396. [Google Scholar] [CrossRef]
- Li, S.; Akiyama, E.; Uno, N.; Hirai, K.; Tsuzaki, K.; Zhang, B. Evaluation of delayed fracture property of outdoor-exposed high strength AISI 4135 steels. Corros. Sci. 2010, 52, 3198–3204. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Y.L.; Yu, W.; Su, L.; Wang, X.; Tang, D. Study on corrosion resistance of high-strength medium-carbon spring steel and its hydrogen-induced delayed fracture. Constr. Build. Mater. 2020, 239, 117815. [Google Scholar] [CrossRef]
- Hirth, J.P. Effects of hydrogen on the properties of iron and steel. Metall. Mater. Trans. A 1980, 11, 861–890. [Google Scholar] [CrossRef]
- Omura, T.; Kudo, T.; Fujimoto, S. Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion. Mater. Trans. 2006, 47, 2956–2962. [Google Scholar] [CrossRef] [Green Version]
- Tsuru, T.; Huang, Y.L.; Ali, M.R.; Nishikata, A. Hydrogen entry into steel during atmospheric corrosion process. Corros. Sci. 2005, 47, 2431–2440. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhu, Y.Y. Hydrogen ion reduction in the process of iron rusting. Corros. Sci. 2005, 47, 1545–1554. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Y.L.; Zheng, C. Hydrogen permeation and corrosion behaviour of high strength steel 35CrMo under cyclic wet-dry conditions. Corros. Eng. Sci. Technol. 2008, 43, 241–247. [Google Scholar] [CrossRef]
- Ootsuka, S.; Fujita, S.; Tada, E.; Nishikata, A.; Tsuru, T. Evaluation of hydrogen absorption into steel in automobile moving environments. Corros. Sci. 2015, 98, 430–437. [Google Scholar] [CrossRef]
- Akiyama, E.; Matsukado, K.; Wang, M.Q.; Tsuzaki, K. Evaluation of hydrogen entry into high strength steel under atmospheric corrosion. Corros. Sci. 2010, 52, 2758–2765. [Google Scholar] [CrossRef]
- Nishimura, R.; Shiraishi, D.; Maeda, Y. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment. Corros. Sci. 2004, 46, 225–243. [Google Scholar] [CrossRef]
- Ootsuka, S.; Tada, E.; Ooi, A.; Nishikata, A. Effect of environmental factors on hydrogen absorption into steel sheet under a wet-dry cyclic corrosion condition. ISIJ Int. 2020, 106, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Hagihara, Y.; Ito, C.; Hisamori, N.; Suzuki, H.; Takai, K.; Akiyama, E. Evaluation of delayed fracture characteristics of high strength steel based on CSRT method. ISIJ Int. 2008, 94, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Takai, K.; Seki, J.; Homma, Y. Hydrogen occlusion behavior during delayed fracture in cold drawn steel wire and heat-treated steel bar for prestressed concrete. ISIJ Int. 1995, 81, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Omura, T.; Matsumoto, H.; Hasegawa, T.; Miyakoshi, Y. Effects of Alloying Elements on Hydrogen Entry to Low Alloy Steels under a Cyclic Corrosion Condition. ISIJ Int. 2016, 56, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Omura, T.; Fujimoto, S. Effects of environmental factors on hydrogen absorption and sulfide stress sracking susceptibility of low alloy steel. Corrosion 2020, 76, 698–706. [Google Scholar] [CrossRef]
- Kushida, T. Hydrogen entry into steel by atmospheric corrosion. ISIJ Int. 2003, 43, 470–474. [Google Scholar] [CrossRef]
- Dey, S.; Mandhyan, A.K.; Sondhi, S.K.; Chattoraj, I. Hydrogen entry into pipeline steel under freely corroding conditions in two corroding media. Corros. Sci. 2006, 48, 2676–2688. [Google Scholar] [CrossRef]
- Azevedo, C.; Bezerra, P.S.A.; Esteves, F.; Joia, C.; Mattos, O.R. Hydrogen permeation studied by electrochemical techniques. Electrochim. Acta 1999, 44, 4431–4442. [Google Scholar] [CrossRef]
- Gajek, A.; Wolarek, Z.; Zakroczymski, T. Behaviour of hydrogen in gas nitrided iron studied by electrochemical permeation and desorption techniques. Corros. Sci. 2012, 58, 260–266. [Google Scholar] [CrossRef]
- Manolatos, P.; Duretthual, C.; Lecoze, J.; Jerome, M. The electrochemical permeation of hydrogen in palladium: Boundary conditions during a galvanostatic charging under low charging current densities. Corros. Sci. 1995, 37, 1797–1807. [Google Scholar] [CrossRef]
- Manolatos, P.; Jerome, M.; Duretthual, C.; Lecoze, J. The electrochemical permeation of hydrogen in steels without palladium coating. Part I: Interpretation difficulties. Corros. Sci. 1995, 37, 1773–1783. [Google Scholar] [CrossRef]
- Manolatos, P.; Duretthual, C.; Lecoze, J.; Jerome, M.; Bollinger, E. The electrochemical permeation of hydrogen in steels without palladium coating. Part II. Study of the influence of microstructure on hydrogen diffusion. Corros. Sci. 1995, 37, 1785–1796. [Google Scholar] [CrossRef]
- Husby, H.; Iannuzzi, M.; Johnsen, R.; Kappes, M.; Barnoush, A. Effect of nickel on hydrogen permeation in ferritic/pearlitic low alloy steels. Int. J. Hydrogen Energy 2018, 43, 3845–3861. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. A 1962, 270, 90–102. [Google Scholar] [CrossRef]
- Permeh, S.; Lau, K.; Boan, M.E.; Tansel, B.; Duncan, M. Cathodic polarization behavior of steel with different marine fouling morphologies on submerged bridge elements with cathodic protection. J. Mater. Civ. Eng. 2020, 32, 04020184. [Google Scholar] [CrossRef]
- de Messano, L.V.R.; Sathler, L.; Reznik, L.Y.; Coutinho, R. The effect of biofouling on localized corrosion of the stainless steels N08904 and UNS S32760. Int. Biodeterior. Biodegrad. 2009, 63, 607–614. [Google Scholar] [CrossRef]
- de Messano, L.V.R.; Reznik, L.Y.; Sathler, L.; Coutinho, R. Evaluation of biocorrosion on stainless steels using laboratory-reared barnacle Amphibalanus amphitrite. Anti-Corros. Methods Mater. 2014, 61, 402–408. [Google Scholar] [CrossRef]
- De Brito, L.V.R.; Coutinho, R.; Cavalcanti, E.S.; Benchimol, M. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel. Biofouling 2007, 23, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Palanichamy, S.; Subramanian, G.; Eashwar, M. Corrosion behaviour and biofouling characteristics of structural steel in the coastal waters of the Gulf of Mannar (Bay of Bengal), India. Biofouling 2012, 28, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.J.; Liu, Y.L.; Liu, N.; Shao, P.; Zhang, X.; Ma, Y. Hydrogen transport in tungsten for nuclear energy application: Temperature dependence and Ccompensation effect. Fusion Sci. Technol. 2020, 76, 616–631. [Google Scholar] [CrossRef]
- Zheng, C.; Yi, G.; Gao, Y. An electrochemical sensor for measuring hydrogen permeation behavior in atmospheric environment. Int. J. Electrochem. Sci. 2012, 7, 9518–9525. [Google Scholar]
- Saeedikhani, M.; Van den Steen, N.; Wijesinghe, S.; Vafakhah, S.; Terryn, H.; Blackwood, D.J. Moving Boundary Simulation of Iron-Zinc Sacrificial Corrosion under Dynamic Electrolyte Thickness Based on Real-Time Monitoring Data. J. Electrochem. Soc. 2020, 167, 041503. [Google Scholar] [CrossRef]
- Hou, B.R.; Zhang, J.L.; Sun, H.Y.; Li, Y.; Xiang, B. Corrosion of C-Mn steel in simulated tidal and immersion zones. Brit. Corros. J. 2001, 36, 310–312. [Google Scholar] [CrossRef]
- Wang, H.H.; Du, M. Corrosion behavior of a low-carbon steel in simulated marine splash zone. Acta Metall. Sin. 2017, 30, 585–593. [Google Scholar] [CrossRef]
- Bourdoiseau, J.A.; Jeannin, M.; Sabot, R.; Remazeilles, C.; Refait, P. Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation. Corros. Sci. 2008, 50, 3247–3255. [Google Scholar] [CrossRef]
- Pineau, S.; Sabot, R.; Quillet, L.; Jeannin, M.; Caplat, C.; Dupont-Morral, I.; Refait, P. Formation of the Fe(II-III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corros. Sci. 2008, 50, 1099–1111. [Google Scholar] [CrossRef]
- Refait, P.; Nguyen, D.D.; Jeannin, M.; Sable, S.; Langumier, M.; Sabot, R. Electrochemical formation of green rusts in deaerated seawater-like solutions. Electrochim. Acta 2011, 56, 6481–6488. [Google Scholar] [CrossRef]
- Alcantara, J.; Chico, B.; Simancas, J.; Diaz, I.; de la Fuente, D.; Morcillo, M. An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres. Mater. Charact. 2016, 118, 65–78. [Google Scholar] [CrossRef]
- Robinson, M.J.; Kilgallon, P.J. Hydrogen embrittlement of cathodically protected high-strength, low-alloy steels exposed to sulfate-reducing bacteria. Corrosion 1994, 50, 626–635. [Google Scholar] [CrossRef]
- Newman, J.F.; Shreir, L.L. Role of hydrides in hydrogen entry into steel from solutions containing promoters. Corros. Sci. 1969, 9, 631–641. [Google Scholar] [CrossRef]
- de Moraes, F.D.; Bastian, F.L.; Ponciano, J.A. Influence of dynamic straining on hydrogen embrittlement of UNS-G41300 and UNS-S31803 steels in a low H2S concentration environment. Corros. Sci. 2005, 47, 1325–1335. [Google Scholar] [CrossRef]
- Wu, T.; Yan, C.; Zeng, D.; Xu, J.; Sun, C.; Yu, C.; Ke, W. Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria. Corros. Sci. 2015, 91, 86–94. [Google Scholar] [CrossRef]
- Lv, M.; Chen, X.; Li, Z.; Du, M. Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater. J. Mater. Sci. Technol. 2021, 92, 109–119. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Y.; Zheng, C.; Yu, Q. The hydrogen permeation investigation of API X56 steel in sea mud. Mater. Corros. 2007, 58, 447–451. [Google Scholar] [CrossRef]
- Marty, F.; Gueune, H.; Malard, E.; Sanchez-Amaya, J.M.; Sjogren, L.; Abbas, B.; Quillet, L.; van Loosdrecht, M.C.M.; Muyzer, G. Identification of key factors in Accelerated Low Water Corrosion through experimental simulation of tidal conditions: Influence of stimulated indigenous microbiota. Biofouling 2014, 30, 281–297. [Google Scholar] [CrossRef]
- Nagumo, M. Hydrogen related failure of steels—A new aspect. Mater. Sci. Technol. 2004, 20, 940–950. [Google Scholar] [CrossRef]
- Qu, W.; Huang, Y.; Yu, X.; Zheng, M.; Lu, D. Effect of Petrolatum Tape Cover on the Hydrogen Permeation of AI-SI4135 Steel under Marine Splash Zone Conditions. Int. J. Electrochem. Sci. 2015, 10, 5892–5904. [Google Scholar]
- Asami, K.; Kikuchi, M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years. Corros. Sci. 2003, 45, 2671–2688. [Google Scholar] [CrossRef]
- Fan, Y.M.; Liu, W.; Li, S.M.; Chowwanonthapunya, T.; Wongpat, B.; Zhao, Y.G.; Dong, B.J.; Zhang, T.Y.; Li, X.G. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion. J. Mater. Sci. Technol. 2020, 39, 190–199. [Google Scholar] [CrossRef]
- Ma, Y.T.; Li, Y.; Wang, F.H. The effect of beta-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment. Mater. Chem. Phys. 2008, 112, 844–852. [Google Scholar] [CrossRef]
- Remazeilles, C.; Refait, P. On the formation of beta-FeOOH (akaganeite) in chloride-containing environments. Corros. Sci. 2007, 49, 844–857. [Google Scholar] [CrossRef]
- Stahl, K.; Nielsen, K.; Jiang, J.Z.; Lebech, B.; Hanson, J.C.; Norby, P.; van Lanschot, J. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 2003, 45, 2563–2575. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Wang, F. Weatherability of 09CuPCrNi steel in a tropical marine environment. Corros. Sci. 2009, 51, 1725–1732. [Google Scholar] [CrossRef]
- Shi, J.; Ming, J.; Zhang, Y.; Jiang, J. Corrosion products and corrosion-induced cracks of low-alloy steel and low-carbon steel in concrete. Cem. Concr. Compos. 2018, 88, 121–129. [Google Scholar] [CrossRef]
- Gong, K.; Wu, M.; Xie, F.; Liu, G.; Sun, D. Effect of Cl- and rust layer on stress corrosion cracking behavior of X100 steel base metal and heat-affected zone in marine alternating wet/dry environment. Mater. Chem. Phys. 2021, 270, 124826. [Google Scholar] [CrossRef]
- Cox, A.; Lyon, S.B. An electrochemical study of the atmospheric corrosion of iron—2. Cathodic and anodic processes on uncorroded and pre-corroded iron. Corros. Sci. 1994, 36, 1177–1192. [Google Scholar] [CrossRef]
- Stratmann, M.; Hoffmann, K. Insitu mossbauer spectroscopic study of reactions within rust layers. Corros. Sci. 1989, 29, 1329–1352. [Google Scholar] [CrossRef]
- Kuch, A. Investigations of the reduction and reoxidation kinetics of iron (III) oxide scales formed in waters. Corros. Sci. 1988, 28, 221–231. [Google Scholar] [CrossRef]
- Evans, U.R. Mechanism of rusting. Corros. Sci. 1969, 9, 813. [Google Scholar] [CrossRef]
- Stratmann, M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-A new experimental technique. Corros. Sci. 1987, 27, 869–872. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers. 1. Verification of the experimental technique. Corros. Sci. 1990, 30, 681–696. [Google Scholar] [CrossRef]
- Venezuela, J.; Zhou, Q.J.; Liu, Q.L.; Zhang, M.X.; Atrens, A. Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions. Corros. Sci. 2016, 111, 602–624. [Google Scholar] [CrossRef] [Green Version]
- Gong, K.; Wu, M.; Liu, G.X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments. Constr. Build. Mater. 2020, 235, 117440. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Ni | Cr | Mo | Fe |
---|---|---|---|---|---|---|---|---|
0.399 | 0.293 | 0.509 | 0.0146 | 0.0144 | 0.0804 | 0.903 | 0.204 | Bal. |
Exposure Site | jaH/nA·cm−2 | C0/mol·cm−3 | HC/wt ppm |
---|---|---|---|
Atmospheric zone | 19.6 | 2.46 × 10−8 | 3.15 × 10−3 |
Splash zone | 435.3 | 5.46 × 10−7 | 7.00 × 10−2 |
Tidal zone | 128.1 | 1.61 × 10−7 | 2.06 × 10−2 |
Immersion zone | 206.9 | 2.60 × 10−7 | 3.33 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Huang, Y.; Cai, F.; Wang, Z.; Lu, D.; Wang, X.; Yang, L. Evaluation of Hydrogen Permeation into High-Strength Steel during Corrosion in Different Marine Corrosion Zones. Appl. Sci. 2022, 12, 2785. https://doi.org/10.3390/app12062785
Xu Y, Huang Y, Cai F, Wang Z, Lu D, Wang X, Yang L. Evaluation of Hydrogen Permeation into High-Strength Steel during Corrosion in Different Marine Corrosion Zones. Applied Sciences. 2022; 12(6):2785. https://doi.org/10.3390/app12062785
Chicago/Turabian StyleXu, Yong, Yanliang Huang, Fanfan Cai, Zhengquan Wang, Dongzhu Lu, Xiutong Wang, and Lihui Yang. 2022. "Evaluation of Hydrogen Permeation into High-Strength Steel during Corrosion in Different Marine Corrosion Zones" Applied Sciences 12, no. 6: 2785. https://doi.org/10.3390/app12062785
APA StyleXu, Y., Huang, Y., Cai, F., Wang, Z., Lu, D., Wang, X., & Yang, L. (2022). Evaluation of Hydrogen Permeation into High-Strength Steel during Corrosion in Different Marine Corrosion Zones. Applied Sciences, 12(6), 2785. https://doi.org/10.3390/app12062785